

Infrared sensor

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15

94496 Ortenburg / Germany

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.com www.micro-epsilon.com

Contents

1. 1.1 1.2 1.3 1.4 1.5	Safety Symbols Used Warnings Notes on CE Marking Intended Use Proper Environment.	7 7 7 8 9 9
2.	Laser Safety	10
3. 3.1 3.2 3.3 3.4 3.5	Technical Data Functional Principle Sensor Models General Specifications Electrical Specifications Measurement Specifications 3.5.1 CTL, CTLF Models 3.5.2 CTLM-1 and CTLM-2 Models 3.5.3 CTLM-3 Models 3.5.4 CTLM-5 Model 3.5.5 CTLC Models 3.5.6 CTLG Models	12 12 13 14 15 16 16 16 17 18 20 21
4. 4.1 4.2	Delivery Unpacking, Included in Delivery Storage	
5.	Optical Charts	23
6. 6.1 6.2 6.3	Mechanical Installation Sensor Controller Mounting Bracket	37 37 38 39

7.	Electric	al Installation	40
7.1	Cable Co	onnections	40
	7.1.1	Basic Version	40
	7.1.2	Connector Version	40
7.2	Power Su		44
7.3	Cable As	sembling	45
7.4	Ground C	Connection	46
	7.4.1	CTLM-5, CTLM-1, CTLM-2, CTLM-3L, CTLM-3H, CTLM-3H1 to -3H3 Models	46
	7.4.2	CTL, CTLF, CTLC-4, CTLC-2, CTLC-6, CTLG Models	47
7.5	Exchang	e of the Sensor	48
	7.5.1	Entering of the Calibration Code	49
	7.5.2	Exchange of the Sensor Cable	50
8	Outputs	and Inputs	51
8.1	Analog C	uto inpato	51
0.1	811	Outout Channel 1	51
	812	Output Channel 2 [only for CT] CTI G]	51
82	Digital In	terfaces	52
0.2	821	USB Interface	53
		8.2.1.1 Installation	
		8.2.1.2 Driver Installation of Interface	
	8.2.2	BS232 Interface	54
		8.2.2.1 Installation	54
		8.2.2.2 Software Installation	54
	8.2.3	RS485 Interface	55
		8.2.3.1 Installation	55
		8.2.3.2 Sensor Installation	56
	8.2.4	Profibus Interface	57
		8.2.4.1 Installation	57
		8.2.4.2 Commissioning Profibus	58
	8.2.5	CAN BUS Interface	59
	8.2.6	Modbus RTU	62
		8.2.6.1 Serial Interface Parameters	62
		8.2.6.2 Protocol	62
		8.2.6.3 Installation Overview	62
		8.2.6.4 Connection of More than one Device (Synchronisation)	65
		8.2.6.5 Overview of Digital Commands for Modbus RTU Digital Interfaces for CT and	
		CTLaser Sensors	65

	8.2.7	Ethernet Interface					
		8.2.7.1 Installation					
		8.2.7.2 Installation of the Ethernet Adapter in a Network	67				
		8.2.7.3 Deinstallation of an Ethernet Interface in a Network	68				
		8.2.7.4 Direct Connection to a PC	71				
		8.2.7.5 Settings inside the CompactConnect Software					
~ ~		8.2.7.6 Resetting the Ethernet Adapter					
8.3	Relays C	putputs					
8.4	Alarma	ai inputs					
0.0	8 5 1	Output Channel 1 and 2 (Channel 2 on CTL_CTLG)					
	852	Visual Alarms	80				
	8.5.3	Open-collector Output / AL2					
9.	Operati	on	82				
9.1	Sensor S	Sensor Settings					
9.2	Explanation to the Menu Items						
9.3	Digital C	Digital Command Set					
9.4	Laser Signting						
9.0		CTL CTLE CTLC-2 CTLC-6 CTLG Models					
	952	CTI M-5 CTI M-1 CTI M-2 CTI M-31 CTI M-3H CTI M-3H1 bis -3H3 Models					
	0.0.L						
10.	Instruct	tions for Operation					
10.1	Cleaning	-					
	-						
11.	Compa	ctConnect Software					
11.1	System I	Requirements					
11.2	Main Fea	atures	91				
12.	Commu	inication Settings					
12.1	Serial Int	erface					
12.2	Protocol						
12.3	ASCII Pro	otocol	92				
12.4	Saving o	f Parameter Settings	93				
12	Racios	of Infrarad Tharmamatry	0/				
13.	Dasics						

14.	Emissivity	
14.1	Definition	
14.2	Determination of Unknown Emissivity	
14.3	Characteristic Emissivity	
15.	Liability for Material Defects	
16.	Service, Repair	
17.	Decommissioning, Disposal	

Appendix

A 1	Optional Accessories	
A 1.1	Air Purge Collar	
A 1.2	Mounting Bracket	
A 1.3	Water Cooled Housing	
A 1.4	High Temperature Cable	
A 1.5	Rail Mount Adapter for Controller	
A 2	Factory Settings	
A 3	Emissivity Table Metals	
A 4	Emissivity Table Non Metals	
A 5	Smart Averaging	

1. Safety

System operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions.

	Indicates a hazardous situation which, if not avoided, may result in minor or moder- ate injury.
NOTICE	Indicates a situation that may result in property damage if not avoided.
\rightarrow	Indicates a user action.
1	Indicates a tip for users.

1.2 Warnings

- Avoid unnecessary laser radiation to be exposed to the human body.
- Switch off the sensor for cleaning and maintenance.

Switch off the sensor for system maintenance and repair if the sensor is integrated into a system.

Caution - use of controls or adjustments or performance of procedures other than those specified may cause harm.

Connect the power supply and the display/output device according to the safety regulations for electrical equipment.

- > Risk of injury
- > Damage to or destruction of the sensor and/or controller

NOTICE

- Avoid shocks and impacts to the sensor and the controller.
- > Damage to or destruction of the sensor and/or controller

The supply voltage must not exceed the specified limits.

> Damage to or destruction of the sensor and/or controller

Protect the sensor cable against damage.

> Destruction of the sensor, Failure of the measuring device

Do not kink the sensor cable and bend the sensor cable in tight radius. The minimum bending radius is 14 mm (static). A dynamic movement is not allowed.

> Damage to the sensor cable, failure of the measuring device

No solvent-based cleaning agents may have an effect on the sensor (neither for the optics nor the housing) > Damage to or destruction of the sensor

Avoid static electricity and keep away from very strong EMF (electromagnetic fields) e.g. arc welders or induction heaters.

> Damage to or destruction of the sensor

1.3 Notes on CE Marking

The following apply to the thermoMETER CTL:

- EU Directive 2004/108/EU
- EU Directive 2011/65/EU, "RoHS", category 9

Products which carry the CE mark satisfy the requirements of the EU directives cited and the European harmonized standards (EN) listed therein. The EU Declaration of conformity is available to the responsible authorities according to the EU Directive, article 10, at:

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 94496 Ortenburg / Germany

The measuring system is designed for use in industrial environments and meets the requirements.

1.4 Intended Use

- The thermoMETER CTL is designed for use in industrial and laboratory areas. It is used for non-contact temperature measurement.
- The system must only be operated within the limits specified in the technical data, see 3.
- The system must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the sensor.
- Take additional precautions for safety and damage prevention in case of for safety-related applications.

1.5 Proper Environment

- Protection class:
 - Sensor: IP 65 (NEMA 4)
- Controller: IP 65 (NEMA 4)
- Ambient temperature:
 - Sensor ¹: -20 ... +85 °C (-4 ... +185 °F), see also Chapter Measurement Specification, see 3.3
 - Controller ²: 20 ... +85 °C (-4 ... +185 °F), see also Chapter Measurement Specification, see 3.3

NOTICE

Avoid abrupt changes of the ambient temperature of both the sensor and the controller. > Inaccurate measuring values

- Storage temperature:
 - Sensor: See also Chapter Measurement Specification, see 3.3
 - Controller: -40 ... +85 °C (-40 ... +185 °F)
- Humidity: 10 ... +95 %, non-condensing

1) The sensor can be used at ambient temperatures up to +85 °C without cooling. For applications, where the ambient temperature can reach higher values, the usage of the optional water cooled housing, see Chap. A 1.3, is recommended (ambient temperature up to +175 °C). The sensor should be equipped with the optional high temperature cable (ambient temperature up to +180 °C), see A 1.4 2) With temperatures < 0 °C (+32 °F), display function is not guaranteed any more.

2. Laser Safety

The thermoMETER CTL sensors operate with a double laser sight with a wavelength of 635 nm (visible/red), see 9.4. The sensors fall within laser class 2 (II). The maximum optical power is \leq 1 mW.

Observe the laser protection regulations!

Laser radiation. Irritation or injury of the eyes possible. Close your eyes or immediately turn away if the laser beam hits the eye. Although the laser output is low, directly looking into the laser beam must be avoided. Close your eyes or immediately turn away if the laser beam hits the eye. The housing of the optical sensors may only be opened by the manufacturer, see 15. For repair and service purposes, the sensor must always be sent to the manufacturer.

Lasers of class 2 (II) are not subject to notification and a laser protection officer is not required. The following warning label must be attached to the cover (front side) of the controller housing.

Fig. 1 Laser warning sign and laser label

During operation of the sensor, the pertinent regulations according to IEC 60825-1 on "Safety of laser products" must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices. Laser operation is indicated by LED.

Fig. 2 Controller with laser labels

- If the warning label is covered over when the unit is installed, the user must ensure that supplementary
- label is applied.

3. Technical Data

3.1 Functional Principle

The sensors of the thermoMETER CTL series are non-contact measuring infrared temperature sensors. They calculate the surface temperature based on the emitted infrared energy of objects, see Chap. 12. An integrated double laser aiming marks the real measurement spot location and spot size at any distance on the object surface.

The sensor housing of the thermoMETER CTL is made from stainless steel (protection class IP 65/ NEMA 4), the controller is placed in a separate box made of die casting zinc.

• The thermoMETER CTL sensor is a sensitive optical system. Please only use the thread for mechanical installation.

NOTICE

Avoid mechanical violence on the sensor.

> Destruction of the system

Model	Model codes	Spectral response	Typical applications	
CTL	-50 to 975 °C	8 - 14 μm	Non-metallic surfaces	
CTLF	-50 to 975 °C	8 - 14 μm	Fast processes	
CTLM-1	485 to 2200 °C	1 <i>µ</i> m	Metals and ceramic surfaces	
CTLM-2	250 to 2000 °C	1.6 μm	Metals and ceramic surfaces	
CTLM-3	50 to 1800 °C	2.3 μm	Metals and composite materials at low object temperatures (from 50 $^\circ \text{C})$	
CTLG	100 to 1650 °C	5.0 μm	Measurement of glass	
CTLC-2		4.24 μm		
CTLC-4	200 to 1450 °C	3.9 μm	Through flames and of CO2- / CO- flame gases	
CTLC-6		4.64 μm		
CTLM-05	100 to 2000 °C	525 nm	Metals and ceramic surfaces	

3.2 Sensor Models

On the CTLM-1, CTLM-2 and CTLM-3 and CTLG models the whole measuring range is split into three sub ranges (L, H and H1).

3.3 General Specifications

	Sensor	Controller	
Protection class	IP 65 (NEMA-4)		
Ambient temperature ¹⁾	-20 +85 °C (-4 +185 °F)	(-20) 0 +85 °C -4 (+32 °F +185 °F) ²	
Storage temperature	-40 +85 °C	(-4 +185 °F)	
Relative humidity	10 95 %, nc	on condensing	
Material	Stainless steel	Zinc, cast	
Dimensions	100 mm x 50 mm, M48x1.5 89 mm x 70 mm x 3		
Weight	600 g	420 g	
Cable length	3 m (standard), 8 m, 15 m		
Cable diameter	5 mm		
Ambient temperature cable	max. 105 °C (High temperature cable (optional): 180 °C)		
Vibration	IEC 68-2-6: 3 g, 11 – 200 Hz, any axis		
Shock	IEC 68-2-27: 50 g, 11 ms, any axis		
Electromagnetic compatibility (EMC)	EN 61326-1: 2006 / EN 61326-2-3: 2006 / EN 61010-1: 2010		

1) Laser will turn off automatically at ambient temperatures > 50 °C.

2) Bei Temperaturen < 0 °C ist die Funktion des Displays nicht mehr gewährleistet.

3.4 Electrical Specifications

Power supply		8 – 36 VDC
Power consumption		Max. 160 mA
Aiming laser		635 nm, 1 mW, On/ Off via programming keys or software
	Channel 1	Selectable: 0/ 4 – 20 mA, 0 – 5/ 10 V, thermocouple (J or K) or alarm output (signal source: Object temperature
Outputs/ analog	Channel 2 (only CTL/CTLF/ CTLC/CTLG)	Sensor temperature [-20 180 °C] as 0 – 5 V or 0 – 10 V respectively alarm output (signal source switch- able to object temperature or controller temperature if used as alarm output)
Alarm output		Open collector output at Pin AL2 (24 V/ 50 mA)
	mA	max. loop resistance 500 Ω (at 8 - 36 VDC),
Output impedances	mV	min. 100 K Ω load impedance
	Thermocouple	20 Ω
Digital interfaces		USB, RS232, RS485, CAN, Profibus DP, Ethernet (via optional plug-in modules)
Relay output		2 x 60 VDC/ 42 VAC _{RMS} , 0.4 A; optically isolated (optional plug-in module)
Functional inputs		 F1 to F3; software programmable for the following functions: External emissivity adjustment, Ambient temperature compensation, Trigger (reset of hold functions)

3.5 Measurement Specifications

3.5.1 CTL, CTLF Models

Model	CTL	CTLF			
Temperature range (scalable)	-50 975 °C				
Spectral range	8 1	4 µm			
Optical resolution	75:1	50:1			
System accuracy 12	±1 °C or ±1 % ³	±1,5 °C or ±1,5 % 4			
Repeatability 1	± 0.5 °C or ± 0.5 % 3	\pm 1 °C or \pm 1 % ⁴			
Temperature resolution (NETD)	0.1 °C ³	0.5 °C 4			
Response time (90 % signal)	120 ms 9 ms				
Warm-up time	10 min				
Emissivity/ Gain	0.100 1.100 (adjustable via programming keys or software)				
Transmissivity	0.100 1.100 (adjustable via programming keys or software)				
Signal processing	Average, peak hold, valley hold (adjustable via programming keys or software)				
Software	CompactConnect				

1) At ambient temperature 23 \pm 5 °C; whichever is greater.

2) Accuracy for thermocouple output: ± 2.5 °C or ± 1 %

3) At object temperatures > 0 °C

4) At object temperatures \geq 20 °C

3.5.2 CTLM-1 and CTLM-2 Models

Model	M-1L	M-1H	M-1H1	M-2L	M-2H	M-2H1
Temperature range (scalable)	485/1050 °C	650/1800 °C	800/2200 °C	250/800 °C	385/1600 °C	490/2000 °C
Spectral range	1 µm			1.6 <i>µ</i> m		
Optical resolution	150:1	30	0:1	150:1	30	0:1
System accuracy 12			±(0.3 % T of r	reading +2 °C) ³		
Repeatability ¹	±(0.1 % T of reading +1 °C) ³					
Temperature resolution (NETD)	0.1 °C					
Exposure time (90 % signal)	1 ms ⁴					
Emissivity/ Gain	0.100 1.100 (adjustable via programming keys or software)					
Transmissivity	0.100 1.100 (adjustable via programming keys or software)					
Signal processing	Average, peak hold, valley hold					
	(adjustable via programming keys or software)					
Software			Compa	ctConnect		

1) At ambient temperature 23 \pm 5 °C; whichever is greater.

2) Accuracy for thermocouple output: ±2,5 °C or ±1 %

3) $\varepsilon = 1/$ Response time 1 s

4) With dynamic adaptation at low signal levels

3.5.3 CTLM-3 Models

Model	M-3L	M-3H	M-3H1	M-3H2	M-3H3	
Temperature range (scalable) 12	50/400 °C	100/600 °C	150/1000 °C	200/1500 °C	250/1800 °C	
Spectral range	2.3 µm					
Optical resolution	60:1 100:1 300:1					
System accuracy 35		±(0.	3 % of reading +2	° C) ³		
Repeatability ³	±(0.1 % of reading +1 °C) ³					
Temperature resolution (digital)	0.1 °C					
Exposure time (90 % signal) ⁴	1 ms ⁴					
Emissivity/ Gain ¹	0.1001.100 (adjustable via programming keys or software)					
Transmissivity/ Gain ¹	0.1001.100 (adjustable via programming keys or software)					
Signal processing ¹	Average, peak hold, valley hold					
	(adjustable via programming keys or software)					
Software			CompactConnect			

1) Adjustable via controller or software

2) Target temperature > sensor temperature +25 °C

3) E = 1, response time 1 s; ambient temperature 23 \pm 5 °C

4) With dynamic adaptation at low signal levels

5) Accuracy for thermocouple output: $\pm 2,5$ °C or ± 1 %

3.5.4 CTLM-5 Model

Model	M-5		
Temperature range ¹	1000/2000 °C		
Spectral range	525 nm		
Optical resolution	150:1		
System accuracy 24	\pm (0.3 % of reading +2 °C) ²		
Repeatability ²	\pm (0.1 % of reading +1 °C) ²		
Temperature resolution	0.2 °C		
Response time (90 % signal) ³	1 ms ³		
Emissivity/ gain ¹	0.1001.100		
Transmissivity/ gain ¹	0.1001.100		
Signal processing ¹	Peak hold, valley hold, average; extended hold function with threshold and hysteresis		
Software	CompactConnect		

1) Adjustable via controller or software

2) E = 1, response time 1 s; ambient temperature 23 \pm 5 °C

3) With dynamic adaptation at low signal levels

4) Accuracy for thermocouple output: $\pm 2,5$ °C or ± 1 %

3.5.5 CTLC Models

Model	C-2 ⁶	C-4 ⁶	C-6 ⁶	
Temperature range ¹	200/1450 °C			
Spectral range	4.24 μm	3.9 <i>µ</i> m	4.64 μm	
Optical resolution	45:1			
System accuracy 345	±1 %			
Repeatability ³	±0.5 % or ±0.5 °C			
Temperature resolution (digital)	0.1 °C			
Response time (90 % signal) ²	10 ms			
Emissivity/ gain ¹	0.1001.100			
Transmissivity/ gain 1	0.1001.100			
Signal processing ¹	Peak hold, valley hold, average; extended hold function with threshold and hysteresis			
Software	CompactConnect			

1) Adjustable via programming keys or software

2) With dynamic adaptation at low signal levels

3) At ambient temperature 23 \pm 0.5 °C; whichever is greater; temperature of the object \geq 0 °C

4) e = 1, response time 1 s

5) Accuracy for thermocouple output: $\pm 2,5$ °C or ± 1 %

6) Models C-2, C-4, C-6 also known as H-models with 400 ... 1650 °C.

3.5.6 CTLG Models

Model	G-L	G-H	GF-H		
Temperature range 1	100 1200 °C	250 1650 °C	200 1450 °C		
Spectral range		5.0 µm			
Optical resolution	45:1	70:1	45:1		
System accuracy 23	±1 °C or ±1.5 %				
Repeatability ²	±0.5 °C or ±0.5 %				
Temperature range (NETD)	0.1 °C				
Exposure time (90 % signal)	120 ms	80 ms			
Warm-up time	10 min				
Emissivity/ Gain 1	0.100 1.100 (adjustable via programming keys or software)				
Transmissivity 1	0.100 1.100 (adjustable via programming keys or software)				
Signal processing	Average, peak hold, valley hold (adjustable via programming keys or software)				
Software	CompactConnect				

1) Adjustable via controller or software

2) At ambient temperature 23 ±5 °C; whichever is greater.

3) Accuracy for thermocouple output: $\pm 2,5$ °C or ± 1 %

4. Delivery

4.1 Unpacking, Included in Delivery

- 1 thermoMETER CTL sensor
- 1 Controller
- 1 Sensor cable
- 1 Mounting nut and mounting bracket (fixed)
- 1 Operating instructions
- Carefully remove the components of the measuring system from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
- Check the delivery for completeness and shipping damage immediately after unpacking.
- If there is damage or parts are missing, immediately contact the manufacturer or supplier.

You will find optional accessories in appendix, see A 1.

4.2 Storage

- Storage temperature: -40 ... 85 °C (-4 ... +185 °F)
- Humidity: 10 ... 95 %

The following optical charts show the diameter of the measuring spot in dependence on the distance between measuring object and sensor. The spot size refers to 90 % of the radiation energy. The distance is always measured from the front edge of the sensor.

- The size of the measuring object and the optical resolution of the infrared thermometer determine the
- 1 maximum distance between sensor and measuring object. In order to prevent measuring errors the object should fill out the field of view of the optics completely. Consequently, the spot should at all times have at least the same size like the object or should be smaller than that.
- D = Distance from front of the sensor to the object
- S = Spot size

thermoMETER CTL

6. Mechanical Installation

6.1 Sensor

Keep the optical path free of any obstacles. For an exact alignment of the sensor to the object activate the integrated double laser, see 9.4.

The CTL is equipped with a metric M48x1.5 thread and can be installed either directly via the sensor thread or with help of the supplied mounting nut (standard) and fixed mounting bracket (standard) to a mounting device available.

Avoid mechanical violence on the sensor.

NOTICE

> Destruction of the system

Fig. 3 Dimensions CTL sensor

Dimensions in mm, not to scale

NOTICE

Make sure to keep the optical path clear of any objects.

> Deviation of measured value, inaccurate measurement result

For an exact alignment of the head to the object, please activate the integrated double laser, see 9.4.

6.2 Controller

Fig. 4 Dimensions CTL controller

Dimensions in mm, not to scale

6.3 Mounting Bracket

The mounting bracket is included in delivery, see 4.1.

Fig. 5 Dimensions mounting bracket, fixed

Dimensions in mm, not to scale

The adjustable mounting bracket allows an adjustment of the sensor in two axis.

7. Electrical Installation

7.1 Cable Connections

7.1.1 Basic Version

The basic version is supplied with a sensor cable (connection sensor - controller).

For the electrical installation of the CTL please open at first the cover of the controller (4 screws).

Below the display are the screw terminals for the cable connection.

7.1.2 Connector Version

This version has a connector plug integrated in the sensor backplane.

Please use the original ready-made, fitting sensor cables which are optionally available, see A 1.

Please note the pin assignment of the connector, see Fig. 6.

When using a cooling jacket the connector version is needed.

Pin a	Pin assignment of connector plug (connector version only)				
Pin	Designation	Color (original sensor cable)	4		
1	Detector signal (+)	yellow	5		
2	Temperature sensor	brown			
3	Temperature sensor	white	6 0 2		
4	Detector signal (-)	green			
5	Ground laser (-)	grey			
6	Power supply laser (+)	pink			
7	-	not used	Connector plug (outer view)		

Fig. 6 Pin assignment of connector plug (connector version only)

Designation (M	odels CTL/ CTLF/ CTLC/ CTLG)		
+8 36 VDC	Power supply		
GND	Ground (0 V) of power supply		
GND	Ground (0 V) of internal inputs and outputs		
OUT-AMB	Analog output sensor temperature (mV)		
OUT-TC	Analog output thermocouple (J or K)		
OUT-mV/mA	Analog output object temperature (mV or mA)		
F1-F3	Functional inputs	A A A A A A A A A A A A A A A A A A A	
AL2	Alarm 2 (open-collector output)		
3V SW	PINK/ Power supply laser (+)		
GND	GREY/ Power supply laser (-)		
BROWN	Temperature probe sensor (NTC)		
WHITE	Ground sensor	Fig. 7 Opened controller CTL/ CTLF/ CTLC/ CTLG with termina	
GREEN	Power supply sensor	connections	
YELLOW	Detector signal		

Designation (M	lodels CTLM)	
+8 36 VDC	Power supply	
GND	Ground (0 V) of power supply	
GND	Ground (0 V) of internal inputs and outputs	
AL2	Alarm 2 (open-collector output)	
OUT-TC	Analog output thermocouple (J or K)	
OUT-mV/mA	Analog output object temperature (mV or mA)	
F1-F3	Functional inputs	
GND	Ground (0 V)	
3 V SW	PINK/ Power supply laser (+)	
GND	GREY/ Power supply laser (-)	
BROWN	Temperature sensor (NTC)	
WHITE	Sensor ground	Fig. 8 Opened controller CTLM with terminal connections
GREEN	Sensor power sensor	
YELLOW	Detector signal	

7.2 Power Supply

- Please use a power supply unit with an output voltage of 8 36 VDC that provides at least 160 mA cur-
- rent. Residual ripple should be no more than 200 mV.

NOTICE

Never apply voltage to the analog outputs.

> Destruction of the output

The CTL is not a 2-wire sensor.

7.3 Cable Assembling

The cable gland M12x1.5 allows the use of cables with a diameter of 3 to 5 mm.

- Remove the isolation from the cable (40 mm power supply, 50 mm signal outputs, 60 mm functional inputs).
- Cut the shield down to approximately 5 mm and spread the strands out.
- Extract about 4 mm of the wire isolation and tin the wire ends.
- Place the pressing screw, the rubber washer and the metal washers of the cable gland one after the other onto the prepared cable end, see Fig. 9.
- Spread the strands and fix the shield between two of the metal washers.
- Insert the cable into the cable gland until the limit stop.
- Screw the cap tight.

Every single wire may be connected to the according screw clamps according to their colors.

Fig. 9 Cable Assembling

- Use shielded cables only.
- I The sensor shield has to be grounded.

7.4 Ground Connection

7.4.1 CTLM-5, CTLM-1, CTLM-2, CTLM-3L, CTLM-3H, CTLM-3H1 to -3H3 Models

At the bottom side of the main board PCB you will find a connector (jumper), which has been placed from factory side as shown in the picture (lower and middle pin connected), see Fig. 10. In this position the ground connections (GND power supply/ outputs) are connected with the ground of the controller housing.

To avoid ground loops and related signal interferences in industrial environments it might be necessary to interrupt this connection.

Remove the board by loosening the two screws in order to switch the jumper on the back of the board.

To do this, please put the jumper in the other position (middle and upper pin connected), see Fig. 11.

If the thermocouple output is used the connection GND – housing should be interrupted generally.

Fig. 10 Plug connector (jumper), GND to housing; CTLM models

Fig. 11 Plug connector (jumper), GND - open; CTLM models

Position cable gland

7.4.2 CTL, CTLF, CTLC-4, CTLC-2, CTLC-6, CTLG Models

At the bottom side of the main board PCB you will find a connector (jumper), which has been placed from factory side as shown in the picture (left and middle pin connected), see Fig. 12. In this position the ground connections (GND power supply/ outputs) are connected with the ground of the controller housing.

To avoid ground loops and related signal interferences in industrial environments it might be necessary to interrupt this connection.

Remove the board by loosening the two screws in order to switch the jumper on the back of the board.

To do this, please put the jumper in the other position (middle and right pin connected), see Fig. 13.

If the thermocouple output is used the connection GND – housing should be interrupted generally.

1

Fig. 12 Plug connector (jumper), GND to housing; CTL, CTLF, CTLC, CTLG models Fig. 13 Plug connector (jumper), GND - open; CTL, CTLF, CTLC, CTLG models

7.5 Exchange of the Sensor

- After exchanging a head the calibration code of the new sensor must be entered into the controller.
- After modification of the code a reset is necessary to activate the changes, see 9. The calibration code is fixed on a label on the sensor. Do not remove this label or note the code. The code is needed if the controller must be exchanged.

From factory side the sensor has already been connected to the controller. Inside a certain model group an exchange of sensors and controllers is possible.

7.5.1 Entering of the Calibration Code

Every sensor has a specific calibration code, that is clearly printed on a label on the sensor, see Fig. 14.

Fig. 14 Calibration code

Please do not remove this label or make sure the code is noted anywhere. The code is needed if the sensor has to be exchanged.

Every sensor has a specific calibration code, which is printed on the sensor. For a correct temperature measurement and functionality of the sensor this calibration code must be stored into the controller.

The calibration code consists of five blocks with 4 characters each.

Example:	EKJ0 -	00UD -	0A1B	A17U	93OZ
	block 1	block 2	block 3	block 4	block 5

• After exchanging a sensor the calibration code of the new sensor must be entered into the controller.

For entering the code, please press the \land and \checkmark -Taste (keep pressed) and then the \circ key, see Fig. 30. The display shows HCODE and then the 4 signs of the first block. With \land and \checkmark each sign can be changed. \circ switches to the next sign or next block.

7.5.2 Exchange of the Sensor Cable

The sensor cable can also be exchanged if necessary.

- For a dismantling on the sensor side, please open at first the cover plate on the back side of the sensor.
- Then please remove the terminal block and loose the connections.
- After the new cable has been installed, please do the same steps in reverse order.
 - Please take care the cable shield is properly connected to the sensor housing.
- $\overset{\bullet}{l}$ As exchange cable a cable type with same wire profiles and specification should be used to avoid influences on the accuracy.

Fig. 15 View on terminal block with sensor cables

8. Outputs and Inputs

8.1 Analog Outputs

The thermoMETER CTL has two analog output channels.

8.1.1 Output Channel 1

This output is used for the object temperature. The selection of the output signal can be done via the programming keys, see 9. The software allows the programming of output channel 1 as an alarm output.

Output signal	Range	Connection pin on CTL board
Voltage	0 5 V	OUT-mV/mA
Voltage	0 10 V	OUT-mV/mA
Current	0 20 mA	OUT-mV/mA
Current	4 20 mA	OUT-mV/mA
Thermo couple	TC J	OUT-TC
Thermo couple	TC K	OUT-TC

According to the chosen output signal there are different connection pins on the main board (OUT-mV/ mA or OUT-TC).

8.1.2 Output Channel 2 [only for CTL, CTLG]

The connection pin OUT AMB is used for output of the sensor temperature [-20 - 180 $^{\circ}$ C as 0 - 5 V or 0 - 10 V signal]. The software allows the programming of output channel 2 as an alarm output.

Instead of the sensor temperature THead also the object temperature TObj or controller temperature TBox can be selected as alarm source.

8.2 **Digital Interfaces**

All CTL sensors can be optionally equipped with an USB-, RS232-, RS485-, CAN Bus-, Profibus DP- or Ethernet-interface

In the case that you want to use the delivered cable gland M12x1.5 for the interface cable, please disassemble the terminal block and assemble them again.

To install, first remove the housing cover to get access to the interior of the housing.

Now take the particular interface board and insert it into the slot provided in the controller.

The slot is located on the left side of the display, see Fig. 16.

In the correct position the holes of the interface match with the thread holes of the controller.

Now press the interface board down gently to connect it and use both M3x5 screws for fixing it in the controller housing.

Plug the pre-assembled interface cable with the terminal block into the male connector of the interface board.

Fig. 16 Interface board

EX Exchange the blind screw on the controller by the cable gland of the respective interface and install the appropriate interface cable.

Please also pay attention to the additional notes for installing the respective interfaces, see 8.2.1, see 1

8.2.2 and the following interface chapters.

8.2.1 USB Interface

8.2.1.1 Installation

Mount the USB adapter, see 8.2.

Make sure the wiring is correct according to the wire colors printed on the interface board.

For industrial installations it is recommended to connect the shield of the USB adapter cable with the controller housing (inside the cable gland).

The CTL does not need external power supply for operation -- it will be powered by the USB interface.

If an external power supply has already been installed, this will not affect the functionality of the CTL.

8.2.1.2 Driver Installation of Interface

Please install the CompactConnect software, see 11.

Now please press the button Install Adapter driver.

All necessary device drivers will be installed. After connecting new sensors or new USB adapter cables to your PC the system will automatically allocate them to the correct driver. If the Found New Hardware Wizard appears you can select Connect to Windows Update or Install the Software automatically.

After you have connected the USB-cable to your PC and started the CompactConnect software the communication will be established. If the recognition is not automatic, you will find the drivers on the Compact Connect Software CD in the path \Driver \ Infrared Sensor Adapter.

8.2.2 RS232 Interface

8.2.2.1 Installation

Mount the RS232 adapter, see 8.2.

• Make sure the wiring is correct according to the drawing and designation printed on the interface board, see Fig. 17.

The CTL always needs an external power supply for operation.

8.2.2.2 Software Installation

Please install the CompactConnect software, see 11.

Follow the software instruction manual on the delivered CompactConnect software CD.

After you have connected the RS232 cable to your PC and started the CompactConnect software the communication will be established.

The setting for baud rate in the CompactConnect software must be the same as on the thermoMETER CTL unit (factory default: 9.6 kBaud).

Please make sure that the option Scan non-USB devices in menu Preferences/Options is activated in the CompactConnect software.

Fig. 17 Pin assignment RS232

8.2.3 RS485 Interface

8.2.3.1 Installation

Mount the RS485 adapter, see 8.2.

The RS485-USB adapter is providing a 2-wire half-duplex mode.

Please connect terminal A of the interface with terminal A of the next RS485 interface and so on, see Fig. 18. With the B terminal proceed as well.

Make sure that you always connect A to A and B to B, not reverse.

You may run up to 32 CTL units on one RS485-USB adapter.

Turn the 120R-switch to ON only at one of the connected CTL units.

Fig. 18 Pin assignment RS485

8.2.3.2 Sensor Installation

Each CTL unit connected to the RS485 needs a different multidrop address (1 ... 32).

Please adjust the address by pressing the o button until M xx appears in the display.

Using the Up and Down keys you can change the shown address (xx) The address can also be changed with the CompactConnect software. The baud rate setting in the CompactConnect software must be the same as on the CT unit (factory default: 9.6 kBaud.)

Please install the CompactConnect software, see 11.

Please connect the RS485 USB adapter (TM-RS485USBK-CT) via the supplied USB cable with your PC.

After it has been connected the computer will recognize a new USB device and (if connected the first time) will ask for installation of the according driver software.

Please select Search and install the RS485 adapter USB driver from the CompactConnect software CD.

8.2.4 Profibus Interface

8.2.4.1 Installation

Mount the Profibus adapter, see 8.2.

• Make sure the wiring is correct, see Fig. 19.

 $^{\circ}$ We recommend for industrial installations to connect the shield of the Profibus cable with the controller housing (inside the cable gland).

The thermoMETER CTL always needs an external power supply.

Connector	Color	Function	Pin
А	Green	А	2
В	Red	В	4
GND	Blue	Ground	3
VCC	Brown	+5 V (not used)	1
Shield	n.c.		5
Housing	Silver (shield)		

Fig. 19 Pin assignment Profibus interface

8.2.4.2 Commissioning Profibus

Read in the "IT010A90.gsd" GSD file, contained on the delivered CompactConnect software CD, into the PLC configuration tool and configure the controller.

At least one module must be selected. You will find more information about the Profibus interface on the enclosed CompactConnect software CD, page 18.

Open the controller and connect the power supply, see Fig. 20.

+8 up to +36 VDC

Fig. 20 Commissioning Profibus

- Switch on the power supply.
- Press the Mode button 18 times until the item "SL001" appears. Set the slave address with the UP and DOWN buttons. Valid slave addresses start with 001 up to 125. Use the same address as in the PLC configuration tool, see the Profibus instruction manual on page 4, 6 on CompactConnect Software CD.
- Switch off the controller for at least 3 seconds by interrupting the power supply.
- Connect the connector of the Profibus cable with a Profibus port. Take care on the terminating resistor of the Profibus.

The controller with DPv1 Profibus is now ready for data exchange with the Profibus master; see the Profibus instruction manual on page 7 on CompactConnect Software CD.

The measuring values are displayed in hex format and must be converted into decimals; see the Profibus instruction manual on page 7 on CompactConnect Software CD.

The settings of the DPv1 Profibus interface and the communication with the Profibus master are described in the Profibus instruction manual on CompactConnect Software CD.

8.2.5 CAN BUS Interface

٦

Mount the CAN BUS adapter, see 8.2.

- Make sure the wiring is correct, see Fig. 19.
- We recommend for industrial installations to connect the shield of the CAN BUS cable with the control-
- ler housing (inside the cable gland).

The thermoMETER CTL always needs an external power supply.

Fig. 21 View on CAN BUS interface

CAN Protocol

CAN open (see documentation on CompactConnect software CD)

Wiring

CAN Bus:

CAN H on terminal "H"

CAN_L on terminal "L"

Analog signal:

Black cord on terminal "GND"

Red cord on terminal "OUT-mV"

The controller contains additional terminals to connect other devices (power supply, CAN bus, terminating resistor).

CAN module factory settings

Module address: 20 (14 H)

Baud rate: 250 kBaud

Analog input: 0 ... 10 V

Temperature range: 0 ... 60 °C (2 decimal places)

Emission ratio: 0.970

The settings for "Analog output 0 ... 10 V" and "Temperature range 0 ... 60 °C" on the CTL sensor must be identical with the CAN bus module values.

Factory settings address and baud rate

CAN open service "LSS / Layer Setting Services"

Index temperature value:

The temperature information is located in the object register 7130h (Sub01):

e.g. B4: LB B5: HB

B4: DA B5: 07 T = 20.10 °C

Before delivery, MICRO-EPSILON can set parameters, desired by the customer, for an extra charge. For the subsequent conversion a CAN master is required.

Diagnosis

If the power supply is on, the LED displays one of the following conditions:

State	Meaning
Flashes quickly	Device is in preoperational-mode.
Off	Power supply is not correct / faulty hardware.
Illuminates	Device is in operational mode.
Sparkles	Device is stopped. = Communication stopped.

8.2.6 Modbus RTU

8.2.6.1 Serial Interface Parameters

Baud rate: 9600 or 19200, set by user (factory default: 9600)

Data bits: 8

Parity: even

Stop bits: 2

Flow control: off

8.2.6.2 Protocol

The protocol is a Modbus RTU protocol.

8.2.6.3 Installation Overview

Insert the Modbus RTU interface on the CTL electronic board and power it with 8 - 36 V.

Select the RS422 mode on the controller.

Fig. 22 Modbus RTU interface

Modbus RTU interface on CTL electronic board

Fig. 23 Installation Modbus RTU interface on thermoMETER CTL electronic board

Use a Modbus RTU program to read out the data, see Fig. 24.

This is done via the Read Holding Registers and Read Input Registers, see Fig. 25.

Connection type:	Serial 🔻
Comm port:	COM65 -
Parity:	Even 💌
Stop bits:	Two 🔻
Baud rate:	9600 -
Byte size:	8 🔹
Mode:	Rtu 🔻
Byte order:	4321 -

Fig. 24 View Modbus RTU program

03 Read Holding Registers 💌 01 Read Coils 02 Read Discrete Inputs 03 Read Holding Registers 04 Read Input Registers 05 Write Single Coil 06 Write Single Register 08 Diagnostics 15 Write Multiple Coils 16 Write Holding Registers

Fig. 25 View dropdown menu Modbus RTU program

8.2.6.4 Connection of More than one Device (Synchronisation)

Turn the 120R switch to ON for the last connected CTL unit.

For the assignment of the Modbus ID of the individual devices, the devices must be connected one after the other.

By default the Modbus ID is for every device 1.

In order to communicate, each device needs its own ID. The numbers 1 to 247 can be selected.

8.2.6.5 Overview of Digital Commands for Modbus RTU Digital Interfaces for CT and CTLaser Sensors

The command overview is available online on the product side of the sensor at:

https://www.micro-epsilon.de/download/manuals/man--thermoMETER-ct-ctlaser-modbus-rtu-commands--en. pdf

8.2.7 Ethernet Interface

- 8.2.7.1 Installation
- Mount the Ethernet adapter, see 8.2.
- In case you want to run the pre-mounted cable of the Ethernet box through the delivered cable gland, the terminal block has to be disassembled/assembled.

The thermoMETER CTL always requires an external power supply of at least 12 V.

- Make sure the wiring is correct according to the colors printed on the interface board.
- Please connect the shield of the cable with the controller housing (inside the cable gland).
- Please connect the Ethernet adapter device with your network using an Ethernet cable.

8.2.7.2 Installation of the Ethernet Adapter in a Network

First connect the PC to the Internet.

Please install the CompactConnect software CD, see 11.

If the autorun option is activated the installation wizard will start automatically. Otherwise please start CDsetup.exe from the CompactConnect software CD. The following screen will appear, see Fig. 26.

Fig. 26 View CompactConnect CD-ROM

Now install the device driver by selecting Install Ethernet Driver.

	Welcome to the Digi RealPort Setup Wizard	up Select Device From the list below, select the device you would like to use. If your device is not in the list, select <device listed="" not=""> and click Next.</device>		use. If your device is not in	Ð
- Si	This wizard will help you to manage Digi RealPort on your system.	Devices found on your network:			
	Digris patented RealPort® software enables your application to access your serial device over the network as if it is connected to a local COM port. Please select an option:	IP Address / 192.168.49.184 Cevice-initiated RealPort: Cevice not listed>	MAC Address 00:40:9D:4D:DA:10	Model CT Ethemet Adapter	Ī
	To continue, click Next.	Don't see your device? Click he	ere for help.	Refresh	
	< Zurück Weiter > Abbrechen		< Zurü	ck Weiter > Abbreche	n
Select Add	New Device and press Weiter.	The IP and MAC a appear in the list.	ddress of the You will find th	Ethernet adapter v e MAC address al	will so

Please mark the adapter in the list and press Weiter.

printed on the Ethernet adapter.

Describe the Device Enter information for the device you wo	uld like to use.	Installing Digi RealPort Please wait while your Digi RealPort device is ins	talled.
Device Model Name: CT Ethemet Adapter Network Settings © IP C MAC C DNS C TCP-L 192.168.49.184 Default Network Profile: TCP: Typical Settings RealPort TCP: Serial UDP: 771 2101 2 Wait for COM open request	COM Port Settings Device Fe No. Ports: I Starting COM: COM97 Skip Modem PnP Install O He	eatures Installing Multiport Serial device	
	< Zurück Fertig stellen	Abbrechen	Zurück Fertig stellen Abbrechen

The following screen shows all settings.

▶ Please press Fertig stellen.

The device will be installed inside the network.

- Select Remove an Existing Device and press then Weiter.
- Select the adapter(s) which should be deinstalled and press Weiter.

8.2.7.4 Direct Connection to a PC

If a direct connection between Ethernet adapter and PC is required both have to be connected via a crossover cable. In addition the adapter and the PC need to get a fixed IP address.

Please open the Windows device manager after the network installation (Start/Control panel/ System/Hardware/Device manager).

Please choose Mehrfachadapter/Multi adapter (serial) from the list.

By double clicking the desired Ethernet adapter, a properties window is opening.

Please open the tab Advanced in this window. Beside Device UI vou will find a link with the network IP address.

Allgemein	Advanced	Treiber Details
M	CT Etheme	et Adapter #2 (192.168.49.184)
	Digi RealP	ort Driver and Setup
	Copyright 1	1998-2010 Digi International Inc.
	Protected I	by U.S. Patent No. 6,047,319. Patents Pending.
Device	Information	·
Mode	I Name:	CT Ethemet Adapter
No. of	f Ports:	1
IP Ad	dress:	192.168.49.184
TCP F	Port:	771
Conne	ection:	Connected
Devic	e UI:	http://192.168.49.184
Secur	ity:	Encryption Off
		Properties
		OK Abbrechen

By clicking on the link the configuration page for the Ethernet adapter will be opened in your web browser. Please select Network (Navigation left; below configuration).

Outputs and Inputs

In the input mask Use the following IP address below you can now enter a fixed IP address.
Outputs and Inputs

Confirm your settings with Apply.

For a communication with the adapter you now have to configure the network settings on your PC.

Please open the LAN settings (Start/Control panel/Network settings/Settings).

Outputs and Inputs

Mark the LAN connection and open the properties window using the right mouse button.

Outputs and Inputs

nschaften von Internetpr	otokoll (TCP/IP)
Ilgemein	
IP-Einstellungen können automatis: Netzwerk diese Funktion unterstütz den Netzwerkadministrator, um die beziehen.	ch zugewiesen werden, wenn das t. Wenden Sie sich andemfalls an geeigneten IP-Einstellungen zu
O IP-Adresse automatisch bezie	hen
Solgende IP-Adresse verwend	Jen:
IP-Adresse:	192 . 168 . 049 . 100
Subnetzmaske:	255 . 255 . 255 . 0
Standardgateway:	I a series
DNS-Serveradresse automatis	sch beziehen
Folgende DNS-Serveradresse	en verwenden:
Bevorzugter DNS-Server:	
Alternativer DNS-Server:	
	Erweitert
	OK Abbrecher

- Please enter here a fixed IP address for the PC.
- Please note that the first three blocks (ex-
- ample: 192.168.049) have to match with the IP address of the adapter device.

Press OK.

The installation is finished.

8.2.7.5 Settings inside the CompactConnect Software

After a successful network installation of the Ethernet adapter you can start the CompactConnect software.

To make sure that an available device can be found you should first activate the function Scan non-USB devices in the menu point Preferences/ Options: Furthermore you should set the Communication mode to Standard (menu: Measurement/ Settings).

This activates the so called polling mode ¹ (bidirectional communication).

Warnung bei ungespeicherten Daten Nach "Stop" speichern Suche auch Nicht-USB-Geräte Gerät automatisch suchen Messung automatisch starten Schaltfläche für LASER anzeigen Warnung bei LASER AN	trenner em terdefiniert: e der Anwendung rammname terdefiniert:	Max. Anzahl von Datenwerten Wenn max. Anzahl von Datenw Stopp Benötigter Speicher Aufnahmeintervall (gleich Diagrammauflösung). Aufnahmezeit:	1000 x 1000 € werten erreicht Überschreiben 42,0MB 1ms ÷ 16 min, 40 s
System Priorität Priorität : normal Abbrechen	<u>Ω</u> K	Kommunikationsart C Auto (empfohlen) C Echtzeit	Standard
		<u> </u>	Abbrechen

1) Polling Mode = Method, to determine the status of a device consisting of hardware or software or the event of a change of values by cyclic queries.

8.2.7.6 Resetting the Ethernet Adapter

The Ethernet adapter can be reset to the factory setting.

Please use a ballpoint pen to press the reset button (hole at the top of the housing).

Switch on the power supply while pressing the reset button.

After a few seconds you will see a flashing green LED (network connection).

Please wait until the green LED flashes with a 1-5-1 ¹ pattern, then you can release the reset button.

Wait until the adapter boots again.

The configuration is reset to factory setting during this time.

The configuration is not reset, if you switch off the adapter before you release the reset button.

The adapter will show an undefined configuration ², if you switch off the adapter briefly after you have released the reset button.

The adapter works in the DHCP mode after resetting.

If you want to make a direct connection to a PC, see 8.2.7.4.

1) Flashing - break - 5 x flashing - break - flashing

2) If necessary only some values are reset.

8.3 Relays Outputs

The thermoMETER CTL can optionally be equipped with a relay output. The relay board is installed the same way as the digital interfaces, see 8.2.

Connect the external electrical circuit with the terminal blocks.

A simultaneous installation of a digital interface and the relay outputs is not possible.

The relay board provides two fully isolated switches, which have the capability to switch max 60 VDC/42 VAC RMS, 0.4 A, DC/AC. A red LED shows the closed switch.

The switching thresholds correspondent with the values for alarm 1 and 2, see 8.5, see 8.5.2 and are factoryset, see A 2:

Alarm 1 = 30 °C/ norm. Closed (Low-Alarm) and Alarm 2 = 100 °C/ norm. open (High-Alarm).

The adjustment of the alarms can result from the modification of the alarm 1 and alarm 2 via the programming keys.

To make advanced settings (change of low- and high alarm) a digital interface (USB, RS232) and the CompactConnect software is needed.

Fig. 27 Relay interface with pin assignment

8.4 Functional Inputs

The three functional inputs F1 - F3 can be programmed with the CompactConnect software, only.

F1 (digital)	Trigger (a 0 V - level on F1 resets the hold functions)
F2 (analog)	External emissivity adjustment [0 - 10 V: 0 V $\triangleright \epsilon = 0.1$; 9 V $\triangleright \epsilon = 1$; 10 V $\triangleright \epsilon = 1.1$]
F3 (analog)	External compensation of ambient temperature/the range is scalable via CompactCon- nect software [0 - 10 V: ▶ -40 - 900 °C/preset range: -20 - 200 °C]
F1 - F3 (digital)	Emissivity (digital choice via table) A non-connected input represents: F1 = High F2, F3 = Low High-level: \geq +3 V +36 V Low-level: \leq +0.4 V36 V

8.5 Alarms

The thermoMETER CTL has following alarm features:

All alarms (alarm 1, alarm 2, output channel 1 and 2 if used as alarm output) have a fixed hysteresis of 2 K).

8.5.1 Output Channel 1 and 2 (Channel 2 on CTL, CTLG)

The respective output channel has to be switched into digital mode for activation. For this the CompactConnect software is required.

8.5.2 Visual Alarms

These alarms will cause a change of color of the LCD display and will also change the status of the optional relays interface. In addition, Alarm 2 can be used as open collector output at pin AL2 on the controller (24 V/ 50 mA).

The alarms are factory-set as follows:

Alarm 1	Norm. closed/Low-Alarm
Alarm 2	Norm. open/High-Alarm

Both of these alarms will have effect on the LCD color:

BLUE	Alarm 1 active
RED	Alarm 2 active
GREEN	No alarm active

For extended setup like definition as low or high alarm (via change of normally open/closed), selection of the signal source (TObj, THead, TBox) a digital interface (e.g. USB, RS232) including the CompactConnect software is needed.

8.5.3 Open-collector Output / AL2

Fig. 28 Open-collector output / AL2

Fig. 29 Open-collector output / AL2 switching diagrams

The transistor acts as switch. In case of an alarm, the contact is closed.

Always one load unit (relay, LED or a resistor) must be connected.

The alarm voltage (here 24 V) must not be connected directly to the alarm output (short circuit).

NOTICE

Prevent the load from exceeding a maximum of 50 mA on the output.

> Destruction of the output

9. Operation

After power up the unit the sensor starts an initializing routine for some seconds. During this time the display will show INIT. After this procedure the object temperature is shown in the display. The display backlight color changes according to the alarm settings, see 8.5, see 8.5.2.

Pressing the Mode button again recalls the last called function on the display. The signal processing features Peak hold and Valley hold cannot be selected simultaneously.

9.1 Sensor Settings

To set the CTlaser back to the factory default settings, press at first the Down-key and then the Mode-key and keep both pressed for approx. 3 seconds. RESET appears as confirmation in the display.

The programming keys \circ , \wedge and \vee enable the user to set the sensor on-site. The current measuring value or the chosen feature is displayed. With Mode the operator obtains the chosen feature, with \wedge and \vee the functional parameters can be selected – a change of parameters will have immediate effect. If no key is pressed for more than 10 seconds the display automatically shows the calculated object temperature (according to the signal processing).

Display	Mode [Sample]	Adjustment Range
S ON	Laser sighting [On]	ON/ OFF
142.3C	Object temperature (after signal processing) [142.3 °C]	Fixed
127CH	Sensor temperature [127 °C]	Fixed
25CB	Box temperature [25 °C]	Fixed
142CA	Current object temperature	Fixed
[] MV5	Signal output channel 1 [0 - 5 V]	 0 - 20 = 0 - 20 mA/ 4 - 20 = 4 - 20 mA/ MV5 = 0 - 5 V/ MV10 = 0 - 10 V/ TCJ = Thermocouple type J/ TCK = Thermocouple type K
E0.970	Emissivity [0.970]	0.100 1.100
T1.000	Transmission [1,000]	0.100 1.100
A 0.2	Signal output Average [0.2 s]	A = inactive/0.1 999.9 s
P	Signal output Peak hold [inactive]	P = inactive/0.1 999.9 s/P oo oo oo oo = infinite
V	Signal output Valley hold [inactive]	V = inactive/0.1 999.9 s /V ∞ = infinite
u 0.0	Lower limit temperature range [0 °C]	depending on model/ inactive at TCJ- and TCK- output
n 500.0	Upper limit temperature range [500 °C]	depending on model/ inactive at TCJ- and TCK- output
[0.00	Lower limit signal output [0 V]	According to the range of the selected output signal

Operation

Display	Mode [Sample]	Adjustment Range
] 5.00	Upper limit signal output [0 V]	According to the range of the selected output signal
U °C	Temperature unit [°C]	°C/°F
/ 30.0	Lower alarm limit [30 °C]	depending on model
// 100.0	Upper alarm limit [100 °C]	depending on model
XHEAD	Ambient temperature compensation [Sensor temperature]	XHEAD = sensor temperature/ -40.0 900.0 °C (for CTL) as fixed value for compensation/ return- ing to XHEAD (sensor temperature) by pressing and v together
M 01	Multidrop address [1] (only with RS485 interface) (only with RS422 Interface)	01 32
B 9.6	Baud rate in kBaud [9.6]	9.6/19.2/38.4/57.6/115.2 kBaud

9.2 Explanation to the Menu Items

Display	Description
S ON	Activating (ON) and Deactivating (OFF) of the Sighting Laser. By pressing a or the laser can be switched on and off.
☐ MV5	Selection of the output signal. By pressing or the different output signals can be selected, see 9.1.
EO.970	Setup of emissivity. Pressing \land increases the value; \checkmark decreases the value (also valid for all further functions). The emissivity (ϵ - Epsilon) is a material constant factor to describe the ability of the body to emit infrared energy, see 14.
T1.000	Setup of transmissivity. This function is used if an optical component (protective window, additional optics e.g.) is mounted between sensor and object. The standard setting is $1.000 = 100 \%$ (if no protective window etc. is used).
A 0.2	Setup of Average time. If the value is set to 0.0 the display will show (function deactivated). In this mode an arithmetic algorithm will be performed to smoothen the signal. The set time is the time constant. This function can be combined with all other post processing functions.
P	Setup of Peak hold. If the value is set to 0.0 the display will show (function deactivated). In this mode the sensor is waiting for descending signals. If the signal descends the algorithm maintains the previous signal peak for the specified time. After the hold time the signal will drop down to the second highest value or will descend by 1/8 of the difference between the previous peak and the minimum value during the hold time. This
	value will be held again for the specified time. After this the signal will drop down with slow time constant and will follow the current object temperature.
V	Setup of Valley hold. If the value is set to 0.0 the display will show (function deactivated). In this mode the sensor waits for ascending signals. The definition of the algorithm is according to the peak hold algorithm (inverted).

Fig. 31 Signal graph with P----

Red graph: TProcess with Peak Hold (Hold time = 1 s)

Blue graph: TActual without post processing

Display	Description
u 0.0	Setup of the lower limit of temperature range. The minimum difference between lower and upper limit is 20 K. If you set the lower limit to a value \geq upper limit, the upper limit will be adjusted to [lower limit + 20 K] automatically.
n 500.0	Setup of the upper limit of the temperature range. The minimum difference between upper and lower limit is 20 K. The upper limit can only be set to a value = lower limit +20 K.
[0.00	Setup of the lower limit of the signal output. This setting allows an assignment of a certain signal output level to the lower limit of the temperature range. The adjustment range corresponds to the selected output mode (e.g. 0 - 5 V).

Display	Description	
] 5.00	Setup of the upper limit of the signal output. This setting allows an assignment of a certain signal output level to the upper limit of the temperature range. The adjustment range corresponds to the selected output mode (e.g. 0 - 5 V).	
U°C	Setup of the temperature unit [°C or °F]	
/ 30.0	Setup of the lower alarm limit. This value corresponds to alarm 1, see 8.5, see 8.5.2. and is also used as threshold value for relay 1 (if the optional relay board is used).	
// 100.0	Setup of the upper alarm limit. This value corresponds to alarm 2, see 8.5, see 8.5.2. and is also used as threshold value for relay 2 (if the optional relay board is used).	
XHEAD	EAD Setup of the ambient temperature compensation. In dependence on the emissivity value of the object a certain amount of ambient radiation will be reflected from the object surface. To compensate this impact, this function allows the setup of a fixed value which represents the ambi radiation.	
	Especially if there is a big difference between the ambient temperature at the object and the sensor temperature the use of ambient temperature compensation is recommended.	
	If XHEAD is shown the ambient temperature value will be taken from the sensor-internal probe. To return to XHEAD, please press A and V together.	
M 01	Setup of the Multidrop address. In a RS485 network each sensor will need a specific address. This menu item will only be shown if a RS485 interface board is plugged in.	
B 9.6	Setup of the baud rate for digital data transfer	

9.3 Digital Command Set

The digital communication of the CTL sensors is based on a binary protocol.

You will find a protocol and command description on the software CD in the directory: \Commands.

9.4 Laser Sighting

Laser radiation.

Irritation or injury of the eyes possible. Close your eyes or immediately turn away if the laser beam hits the eye.

Do not stare into the laser beam. Avoid indirect exposure via reflective surfaces!

NOTICE

1

The thermoMETER CTL operate with a double laser sighting which should support the sensor alignment. The measurement spot is within the two laser points.

In the focal point of the respective lens, see 5, both laser points overlap each other and therefore mark the minimum measurement spot as one laser point. This is how the sensor can be positioned for the object to be measured.

The laser can be activated/ deactivated via the programming keys on the unit or via the software. If the laser is activated a yellow LED will shine (beside temperature display), see Fig. 29. At ambient temperatures > 50 °C the laser will switch off automatically.

• The two laser points mark the position of the measuring spot, but not its exact size. The exact size of the measurement spot can be found in the optical charts, see 5.

At ambient temperatures > 50 °C the laser will be switched off automatically.

The laser should only be used for sighting and positioning of the sensor, not for permanent use.

- > Shorten the lifetime of the sensor diodes
- > Inaccurate or incorrect measurements

9.5 Error Messages

The display of the thermoMETER CTL can show the following error messages:

9.5.1 CTL, CTLF, CTLC-4, CTLC-2, CTLC-6, CTLG Models

- OVER Object temperature too high
- UNDER Object temperature too low
- ^ ^ CH Sensor temperature too high
- vvvCH Sensor temperature too high

9.5.2 CTLM-5, CTLM-1, CTLM-2, CTLM-3L, CTLM-3H, CTLM-3H1 bis -3H3 Models

- 1. digit:
- 0x No error
- 1x Sensor temperature probe short circuit to GND
- 2x Box temperature too low
- 4x Box temperature too high
- 6x Box temperature probe disconnected
- 8x Box temperature probe short circuit to GND
- 2. digit:
- 0x No error
- x2 Object temperature to high
- x4 Sensor temperature too low
- x8 Sensor temperature too high
- xC Sensor temperature probe disconnected

10. Instructions for Operation

10.1 Cleaning

Lens cleaning: Blow off loose particles using clean compressed air. The lens surface can be cleaned with a soft, humid tissue moistened with water or a lens cleaner (e.g. Purosol or B + W Lens Cleaner).

NOTICE

Never use cleaning compounds which contain solvents (neither for the lens nor for the housing). > Destruction of the sensor and/or the controller

11. CompactConnect Software

Insert the CompactConnect installation CD into the according drive on your computer.

If the auto run option is activated the installation wizard will start automatically.

Otherwise, please start CDsetup.exe from the CD-ROM.

Follow the instructions of the wizard until the installation is finished.

The installation wizard will place a launch icon on the desktop and in the start menu.

If you want to uninstall the CompactConnect software from your system, please use the uninstall icon in the start menu.

You will find detailed software manual on the CompactConnect software CD.

11.1 System Requirements

- Windows XP, Windows Vista, Windows 7, 8 and 10
- At least 128 MByte RAM
- USB Interface
- CD-ROM drive
- Hard disc with at least 30 MByte free space

11.2 Main Features

Fig. 32 Graphic display main features

- Graphical display for temperature measuring values and automatic data logging for analysis and documentation
- Complete sensor setup and remote controlling
- Adjustment of signal processing functions
- Programming of outputs and functional inputs

12. Communication Settings

12.1 Serial Interface

Baud rate:	$9.6 \ldots 115.2 \ \text{kBaud}$ (adjustable on the unit or via software)
Data bits:	8
Parity:	none
Stop bits:	1
Flow control:	off

12.2 Protocol

All sensors of the CTlaser series are using a binary protocol. Alternatively they can be switched to an ASCII protocol. To get a fast communication the protocol has no additional overhead with CR, LR or ACK bytes.

12.3 ASCII Protocol

To switch to the ASCII protocol please use the following command:

Decimal:	131
HEX:	0x83
Data, answer:	byte 1
Result:	0 – Binary protocol
	1 – ASCII protocol

12.4 Saving of Parameter Settings

After power on of the CTIaser sensor the flash mode is active. It means, changed parameter settings will be saved in the internal Flash-EEPROM and will be kept also after the sensor is switched off.

In case settings should be changed quite often or continuously the flash mode can be switched off by using the following command:

Decimal: 112

HEX: 0x70

Data, Answer: byte 1

Result: 1 – Data will be written into the flash memory

2 - Data will not be written into the flash memory

If the flash mode is deactivated, all settings will only be kept as long as the unit is powered. If the unit is switched off and powered on again all previous settings are lost.

The command 0x71 will poll the current status.

You will find a detailed protocol and command description on the software CD CompactConnect in the directory: \Commands.

13. Basics of Infrared Thermometry

Depending on the temperature each object emits a certain amount of infrared radiation. A change in the temperature of the object is accompanied by a change in the intensity of the radiation. For the measurement of "thermal radiation" infrared thermometry uses a wave-length ranging between 1 μ and 20 μ m. The intensity of the emitted radiation depends on the material. This material contingent constant is described with the help of the emissivity (ε - Epsilon) which is a known value for most materials, see 14.

Infrared thermometers are optoelectronic sensors. They calculate the surface temperature on the basis of the emitted infrared radiation from an object. The most important feature of infrared thermometers is that they enable the user to measure objects contactless. Consequently, these products help to measure the temperature of inaccessible or moving objects without difficulties. Infrared thermometers basically consist of the following components:

- Lens
- Spectral filter
- Detector
- Controller (Amplifier/linearization/signal processing)

The specifications of the lens decisively determine the optical path of the infrared thermometer, which is characterized by the ratio Distance to Spot size.

The spectral filter selects the wavelength range, which is relevant for the temperature measurement. The emitted infrared radiation is transformed into electrical signals by the detector and the controller.

14. Emissivity

14.1 Definition

The intensity of infrared radiation, which is emitted by each body, depends on the temperature as well as on the radiation features of the surface material of the measuring object. The emissivity (ϵ – Epsilon) is used as a material constant factor to describe the ability of the body to emit infrared energy. It can range between 0 and 100 %. A "blackbody" is the ideal radiation source with an emissivity of 1.0 whereas a mirror shows an emissivity of 0.1.

If the emissivity chosen is too high, the infrared thermometer may display a temperature value which is much lower than the real temperature – assuming the measuring object is warmer than its surroundings. A low emissivity (reflective surfaces) carries the risk of inaccurate measuring results by interfering infrared radiation emitted by background objects (flames, heating systems, chamottes). To minimize measuring errors in such cases, the handling should be performed very carefully and the unit should be protected against reflecting radiation sources.

14.2 Determination of Unknown Emissivity

- First of all, determine the current temperature of the measuring object with a thermocouple or contact sensor. The second step is to measure the temperature with the infrared thermometer and modify the emissivity until the displayed measuring value corresponds to the current temperature.
- If you monitor temperatures of up to 380 °C you may place a special plastic sticker (Part number: TM-ED-CT emissivity dots) onto the measuring object, which covers it completely.
- Now set the emissivity to 0.95 and take the temperature of the sticker.
- Afterwards, determine the temperature of the adjacent area on the measuring object and adjust the emissivity according to the value of the temperature of the sticker.
- Cover a part of the surface of the measuring object with a black, flat paint with an emissivity of 0.98.
- Adjust the emissivity of your infrared thermometer to 0.98 and take the temperature of the colored surface.
- Afterwards, determine the temperature of a directly adjacent area and modify the emissivity until the measured value corresponds to the temperature of the colored surface.
 - On all three methods the object temperature must be different from the ambient temperature.

1

14.3 Characteristic Emissivity

In the case that none of the methods mentioned above help to determine the emissivity you may use the emissivity tables, see A 3, see A 4. These are only average values. The actual emissivity of a material depends on the following factors:

- Temperature
- Measuring angle
- Geometry of the surface (smooth, convex, concave)
- Thickness of the material
- Constitution of the surface (polished, oxidized, rough, sandblast)
- Spectral range of the measurement
- Transmissivity (e.g. with thin films)

15. Liability for Material Defects

All components of the device have been checked and tested for functionality at the factory. However, if defects occur despite our careful quality control, MICRO-EPSILON or your dealer must be notified immediately.

The liability for material defects is 12 months from delivery.

Within this period, defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for material defects. Repairs are carried out exclusively by MICRO-EPSILON.

Further claims can not be made. Claims arising from the purchase contract remain unaffected. In particular, MICRO-EPSILON shall not be liable for any consequential, special, indirect or incidental damage. In the interest of further development, MICRO-EPSILON reserves the right to make design changes without notification.

For translations into other languages, the German version shall prevail.

16. Service, Repair

If the sensor, controller or the sensor cable is defective, please send us the affected parts for repair or exchange.

In the case of faults the cause of which is not clearly identifiable, the entire measuring system must be sent back to:

For customers in USA applies:

Send the affected parts or the entire measuring system back to:

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 94496 Ortenburg / Germany Tel. +49 (0) 8542/ 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com www.micro-epsilon.com

MICRO-EPSILON USA 8120 Brownleigh Dr. Raleigh, NC 27617 /USA Tel. +1 919 / 787-9707 Fax +1 919 / 787-9706 me-usa@micro-epsilon.com www.micro-epsilon.com

For customers in Canada or South America applies: Please contact your local distributor.

17. Decommissioning, Disposal

Remove the sensor and controller cables.

Incorrect disposal may cause harm to the environment.

Dispose of the device, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.

Appendix

A 1 Optional Accessories

All accessories can be ordered using the according part numbers in brackets [].

A 1.1 Air Purge Collar

The lens must be kept clean at all times from dust, smoke, fumes and other contaminants in order to avoid reading errors. These effects can be reduced by using an air purge collar.

Fig. 33 Dimensions Air Purge Collar [TM-AP-CTL], hose connection: 6x8 mm, thread (fitting): G 1/8 inch

Dimensions in mm, not to scale

The needed amount of air (approximately 2 \dots 10 l/ min.) depends on the application and the installation conditions on-site.

Fig. 34 Dimensions mounting bracket, adjustable in two axes [TM-AB-CTL]

Dimensions in mm, not to scale

The adjustable mounting bracket allows an adjustment of the sensor in two axes.

Fig. 35 Dimensions water cooled housing [TM-W-CTL], hose connection: 6x8 mm, thread (fitting): G 1/8 inch

Dimensions in mm, not to scale

To avoid condensation on the optics an air purge collar is recommended.

Water flow rate: approx. 2 l/ min

Cooling water temperature should not exceed 30 °C.

The sensor can be used at ambient temperatures up to 85 °C without cooling. For applications, where the ambient temperature can reach higher values, the usage of the optional water cooled housing is recommended (ambient temperature up to 175 °C). The sensor should be equipped with the optional high temperature cable (ambient temperature up to 180 °C).

A 1.4 High Temperature Cable

For applications, where the ambient temperature can reach higher values, the usage of an optional high temperature cable is also recommended (ambient temperature up to 180 °C).

A 1.5 Rail Mount Adapter for Controller

With the rail mount adapter the CTlaser controller can be mounted easily on a DIN rail (TS35) according EN 50022.

Fig. 36 Rail mount adapter [TM-RAIL-CTL]

Dimensions in mm, not to scale

A 2 Factory Settings

The devices have following presettings at time of delivery:

Signal output object temperature	0 - 5 V
Emissivity	0.970 (1,000 at CTLM)
Transmissivity	1.000
Average time (AVG)	0.2 s (LTL); 0.1 (CTLF, CTLC-4, CTLC-2, CTLC-6, CTLG); inactive (CTLM-5, CTLM-1, CTLM-2, CTLM-3L, CTLM-3H, CTLM-3H1 to -3H3)
Smart Averaging	inactive (CTLF: M1, M2, M3 active)
Peak hold (MAX)	inactive
Valley hold (MIN)	inactive

Smart Averaging means a dynamic average adaptation at high signal edges (Activation via software only).

Model	CTL/CTLF	M-1L	M-1H	M-1H1	M-2L	M-2H	M-2H1	M-3L			
Lower limit temperature range [°C]	0	485	650	800	250	385	490	50			
Upper limit temperature range [°C]	500	1050	1800	2200	800	1600	2000	375			
Lower alarm limit [°C] (normally closed)	30	600	800	1200	350	500	800	100			
Upper alarm limit [°C] (normally open)	100	900	1400	1600	600	1200	1400	300			
Lower limit signal output	0 V										
Upper limit signal output		5 V									
Temperature unit	°C										
Ambient temperature compensation	Sensor temperature probe (output at OUT-AMB: 0-5 V ▶ -20–180 °C; not available on 1M and 2M models)										
Baud rate [kBaud]	CTL: 9.6 / M-xL, M-xH: 115/ CTLG: 9.6										
Laser				inactiv	ve	inactive					

Model	M-3H	M-3H1	M-3H2	M-3H3	M-5
Lower limit temperature range [°C]	100	150	200	350	1000
Upper limit temperature range [°C]	600	900	1200	1800	2000
Lower alarm limit [°C] (normally closed)	200	350	550	750	1200
Upper alarm limit [°C] (normally open)	500	600	1000	1200	1600
Lower limit signal output	0 V				
Upper limit signal output	5 V				
Temperature unit	D°				
Ambient temperature compensation	Sensor temperature probe				
Baud rate [kBaud]	115				
Laser	inactive				

Model	CTLC-2	CTLC-4	CTLC-6	GL	GH
Lower limit temperature range [°C]	200	200	200	100	250
Upper limit temperature range [°C]	1450	1450	1450	1200	1650
Lower alarm limit [°C] (normally closed)	400	400	400	200	350
Upper alarm limit [°C] (normally open)	1200	1200	1200	500	900
Lower limit signal output	0 V				
Upper limit signal output	5 V				
Temperature unit	D°				
Ambient temperature compensation	Sensor temperature probe (output at OUT-AMB: 0 - 5 V ▶ -20 - 180 °C)				
Baud rate [kBaud]	115				
Laser	inactive				

٠

1

A 3 Emissivity Table Metals

Please note that these are only approximate values, which were taken from various sources.

Material		Typical Emissivity			
Spectral respor	nse	1.0 <i>µ</i> m	1.6 <i>µ</i> m	5.1 <i>µ</i> m	8 - 14 <i>µ</i> m
Aluminum	Non oxidized	0.1 - 0.2	0.02 - 0.2	0.02 - 0.2	0.02 - 0.1
	Polished	0.1 - 0.2	0.02 - 0.1	0.02 - 0.1	0.02 - 0.1
	Roughened	0.2 - 0.8	0.2 - 0.6	0.1 - 0.4	0.1 - 0.3
	Oxidized	0.4	0.4	0.2 - 0.4	0.2 - 0.4
Brass	Polished	0.35	0.01 - 0.05	0.01 - 0.05	0.01 - 0.05
	Roughened	0.65	0.4	0.3	0.3
	Oxidized	0.6	0.6	0.5	0.5
Copper	Polished	0.05	0.03	0.03	0.03
	Roughened	0.05 - 0.2	0.05 - 0.2	0.05 - 0.15	0.05 - 0.1
	Oxidized	0.2 - 0.8	0.2 - 0.9	0.5 - 0.8	0.4 - 0.8
Chrome		0.4	0.4	0.03 - 0.3	0.02 - 0.2
Gold		0.3	0.01 - 0.1	0.01 - 0.1	0.01 - 0.1
Haynes	Alloy	0.5 - 0.9	0.6 - 0.9	0.3 - 0.8	0.3 - 0.8
Inconel	Electro polished	0.2 - 0.5	0.25	0.15	0.15
	Sandblast	0.3 - 0.4	0.3 - 0.6	0.3 - 0.6	0.3 - 0.6
	Oxidized	0.4 - 0.9	0.6 - 0.9	0.6 - 0.9	0.7 - 0.95

Material			missivity		
Spectral respon	se	1.0 μm 1.6 μm 5.1 μm 8 - 14 j			8 - 14 <i>µ</i> m
Iron	Non oxidized	0.35	0.1 - 0.3	0.05 - 0.25	0.05 - 0.2
-	Rusted		0.6 - 0.9	0.5 - 0.8	0.5 - 0.7
-	Oxidized	0.7 - 0.9	0.5 - 0.9	0.6 - 0.9	0.5 - 0.9
_	Forget, blunt	0.9	0.9	0.9	0.9
-	Molten	0.35	0.4 - 0.6		
Iron, casted	Non oxidized	0.35	0.3	0.25	0.2
_	Oxidized	0.9	0.7 - 0.9	0.65 - 0.95	0.6 - 0.95
Lead	Polished	0.35	0.05 - 0.2	0.05 - 0.2	0.05 - 0.1
-	Roughened	0.65	0.6	0.4	0.4
-	Oxidized		0.3 - 0.7	0.2 - 0.7	0.2 - 0.6
Magnesium		0.3 - 0.8	0.05 - 0.3	0.03 - 0.15	0.02 - 0.1
Mercury			0.05 - 0.15	0.05 - 0.15	0.05 - 0.15
Molybdenum	Non oxidized	0.25 - 0.35	0.1 - 0.3	0.1 - 0.15	0.1
_	Oxidized	0.5 - 0.9	0.4 - 0.9	0.3 - 0.7	0.2 - 0.6
Monel (Ni-CU)		0.3	0.2 - 0.6	0.1 - 0.5	0.1 - 0.14
Nickel	Electrolytic	0.2 - 0.4	0.1 - 0.3	0.1 - 0.15	0.05 - 0.15
-	Oxidized	0.8 - 0.9	0.4 - 0.7	0.3 - 0.6	0.2 - 0.5
Platinum	Black		0.95	0.9	0.9
Silver		0.04	0.02	0.02	0.02

Material		Typical Emissivity					
Spectral response		1.0 <i>µ</i> m	1.0 μm 1.6 μm		8 - 14 <i>µ</i> m		
Steel	Polished plate	0.35	0.25	0.1	0.1		
	Rustless	0.35	0.2 - 0.9	0.15 - 0.8	0.1 - 0.8		
	Heavy plate			0.5 - 0.7	0.4 - 0.6		
	Cold-rolled	0.8 - 0.9	0.8 - 0.9	0.8 - 0.9	0.7 - 0.9		
	Oxidized	0.8 - 0.9	0.9 - 0.9	0.7 -0.9	0.7 - 0.9		
Tin	Non oxidized	0.25	0.1 - 0.3	0.05	0.05		
Titanium	Polished	0.5 - 0.75	0.3 - 0.5	0.1 - 0.3	0.05 - 0.2		
	Oxidized		0.6 - 0.8	0.5 - 0.7	0.5 - 0.6		
Wolfram	Polished	0.35 - 0.4	0.1 - 0.3	0.05 - 0.25	0.03 - 0.1		
Zinc	Polished	0.5	0.05	0.03	0.02		
	Oxidized	0.6	0.15	0.1	0.1		
٠

1

A 4 Emissivity Table Non Metals

Please note that these are only approximate values which were taken from various sources.

Material		Typical Emissivity				
Spectral response		1.0 <i>µ</i> m	2.3 µm	5.1 <i>µ</i> m	8 - 14 <i>µ</i> m	
Asbest		0.9	0.8	0.9	0.95	
Aphalt				0.95	0.95	
Basalt				0.7	0.7	
Carbon	Non oxidized		0.8 - 0.9	0.8 - 0.9	0.8 - 0.9	
_	Graphite		0.8 - 0.9	0.7 - 0.9	0.7 - 0.9	
Carborundum		0.4	0.8 - 0.95	0.8 - 0.95	0.95	
Cement		0.65	0.9	0.9	0.95	
Ceramic		0.65	0.9	0.9	0.95	
Glass	Plate		0.2	0.98	0.85	
-	Melt		0.4 - 0.9	0.9		
Grit				0.95	0.95	
Gypsum				0.4 - 0.97	0.8 - 0.95	
Ice					0.98	
Limestone				0.4 - 0.98	0.98	
Paint	Non alcaline				0.9 - 0.95	
Paper	Any color			0.95	0.95	
Plastic > 50 μ m	Non transparent			0.95	0.95	
Rubber				0.9	0.95	

Material	Typical Emissivity			
Spectral response	1.0 <i>µ</i> m	2.3 µm	5.1 <i>µ</i> m	8 - 14 <i>µ</i> m
Sand			0.9	0.95
Snow				0.9
Soil				0.9 - 0.98
Textiles			0.95	0.95
Water				0.93
Wood Natural			0.9 - 0.95	0.9 - 0.95

A 5 Smart Averaging

The average function is generally used to smoothen the output signal. With the adjustable parameter time this function can be optimal adjusted to the respective application. One disadvantage of the average function is that fast temperature peaks which are caused by dynamic events are subjected to the same averaging time. Therefore those peaks can only be seen with a delay on the signal output.

The function Smart Averaging eliminates this disadvantage by passing those fast events without averaging directly through to the signal output.

Fig. 37 Signal graph with Smart Averaging function

Fig. 38 Signal graph without Smart Averaging function

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 · 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com · www.micro-epsilon.com X9751197-B042040HDR

© MICRO-EPSILON MESSTECHNIK

