

Plus de précision.

Solutions de mesure 3D pour un contrôle qualité précis en ligne

Des données brutes précises pour les intégrateurs

Des données brutes précises pour les intégrateurs et les processeurs d'image

Les capteurs 3D de Micro-Epsilon sont utilisés pour de nombreuses tâches de mesure et d'inspection sur les surfaces mates ainsi que réfléchissantes. La possibilité de documenter et de comparer les résultats de mesure permet de tirer des conclusions importantes quant à l'amélioration du processus. Tous les systèmes d'inspection 3D peuvent être utilisés hors ligne ainsi que dans l'opération entièrement automatique et sur le robot.

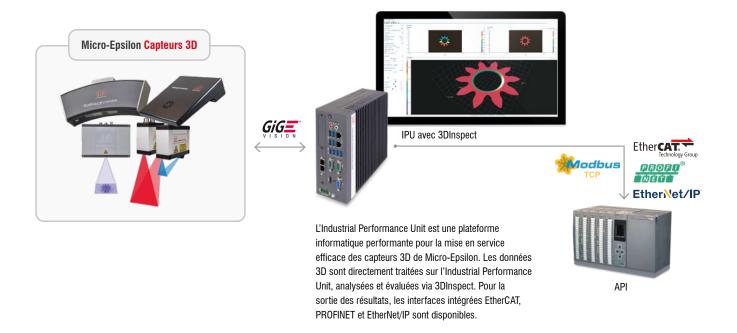
Micro-Epsilon 3D-SDK pour la connexion du logiciel

Les capteurs 3D de Micro-Epsilon disposent d'un SDK (Software Development Kit) facile à utiliser. Le SDK est basé sur les standards d'industrie GigE Vision et GenlCam et comprend les blocs de fonctions essentiels suivants :

- Configuration réseau et connexion au capteur
- Contrôle de la transmission des données (données de mesure 3D, images de vidéo, compteur de profils, ...)
- Contrôle du capteur exhaustif
- User sets
- Documentation
- Programmes exemplaires C++
- 3D Viewer

Tous les avantages du SDK 3D

- Pour l'intégration de tous les capteurs 3D
- Compatible GigE Vision / GenICam
- Accès à tous les paramètres du capteur
- Exemples inclus
- Documentation complète



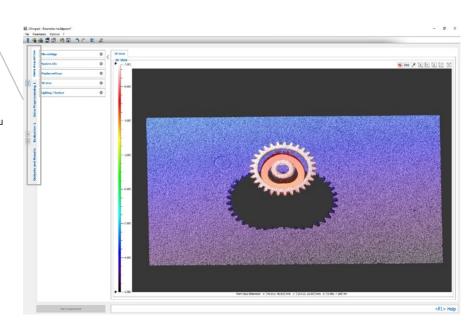
Logiciel performant pour les tâches de mesure 3D

3DInspect

3DInspect est un outil logiciel uniforme et convivial pour tous les capteurs 3D de Micro-Epsilon. Le paramétrage des capteurs 3D et l'enregistrement des données de mesure se font directement à partir du logiciel 3DInspect. De puissants outils permettent d'aligner et de filtrer le nuage de points, de reconnaître et de sélectionner intuitivement les zones pertinentes et de combiner les programmes. Les nuages de points 3D peuvent être traités à volonté et les valeurs de mesure déterminées peuvent être transmises à la commande.

Tous les avantages de 3DInspect

- Un seul logiciel pour tous les capteurs 3D
- Haute compatibilité
- Haute flexibilité
- Interface utilisateur intuitive
- Évaluation 3D réelle, non seulement 2.5D
- Extraction d'objet en 3D
- Retour direct avec les algorithmes


Acquisition des données

Prétraitement des données

Évaluation

Résultats

3DInspect utilise une structure de programme logique qui se déroule pas à pas, de l'acquisition des données au traitement et à la sortie des résultats.

Logiciel pour résoudre les tâches de mesure 3D et d'inspection

3DInspect

Interface utilisateur intuitive

Évaluation 3D réelle, non seulement 2.5D

Extraction d'objet en 3D

Retour direct avec les algorithmes

Compatible avec tous les capteurs 3D de Micro-Epsilon

Le logiciel 3DInspect est un outil performant pour le paramétrage du capteur ainsi que pour la solution des tâches de mesure industrielles. Le logiciel transmet les données de mesure du capteur par le biais d'Ethernet et l'affichage sous forme 3D. Ces données 3D sont traitées, évaluées, estimées par le logiciel 3DInspect sur l'ordinateur et, si nécessaire, transmises par le biais d'Ethernet à une unité de commande. En plus, il permet de sauvegarder les données 3D. Le logiciel 3DInspect soutient les modèles scanCONTROL 30xx ainsi que les capteurs 3D surfaceCONTROL et reflectCONTROL.

Technologie Valid3D de Micro-Epsilon vs. systèmes 2.5D conventionnels

La technologie unique Valid3D permet l'affichage et le traitement sans perte des nuages de points. Ainsi, les objets 3D numérisés peuvent être déplacés arbitrairement dans le système de coordonnées.

Valid3D - Véritable 3D sans perte de données

Objet à mesurer Nuage de points

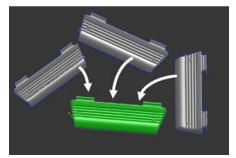
Nuage de points après pivotement

3DInspect avec Valid3D

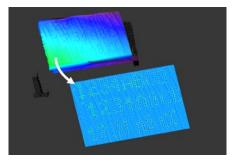
- Projection 3D réelle de l'objet de test sans perte de données
- Analyse et évaluation de l'objet de test intégral

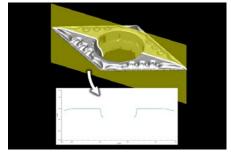
Logiciel 3D conventionnel

- Les algorithmes sont basés sur 2.5D
- Seulement 1 coordonnée z par coordonnée x/y
- Perte de données pendant le traitement

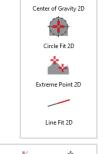

Prétraitement des données

Lors du prétraitement des données, le nuage de points peut être adapté avant l'évaluation. Cela permet par exemple de corriger une position de composant changeante, de sorte que le nuage de points se trouve toujours au même endroit pour l'évaluation.

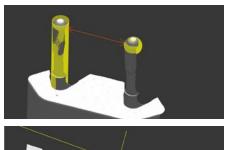

En outre, il est possible d'affiner le nuage de points avant l'évaluation, d'appliquer des filtres pour mettre en évidence des caractéristiques, de couper les points non pertinents ou d'effectuer des coupes.

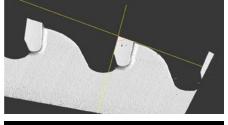


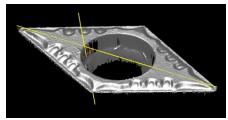
Préparation des données

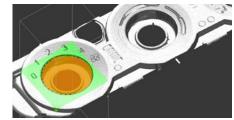

Mise en place de coupes

Évaluation des données

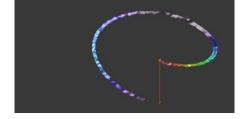

Lors de l'évaluation des données, de nombreux programmes sont disponibles pour trouver et mesurer les caractéristiques. Il peut s'agir par exemple d'arêtes, de sphères ou de trous. Il est possible d'évaluer les données 3D, mais aussi de mesurer ou d'évaluer directement des coupes préalablement créées.


Les objets 2D et 3D peuvent en outre être mis en relation les uns avec les autres via des combinaisons, afin de déterminer par exemple les distances entre une sphère et un plan ou l'angle entre deux arêtes.









Scanner laser pour la mesure de profil 3D

scanCONTROL

Jusqu'à 2.048 points par profil

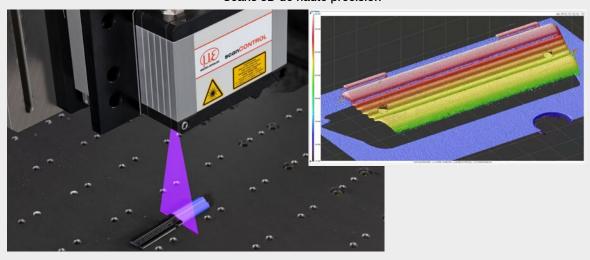
Jusqu'à 7.372.800 points par seconde

Forme compacte

Résolution latérale à partir de 7,8 μ m

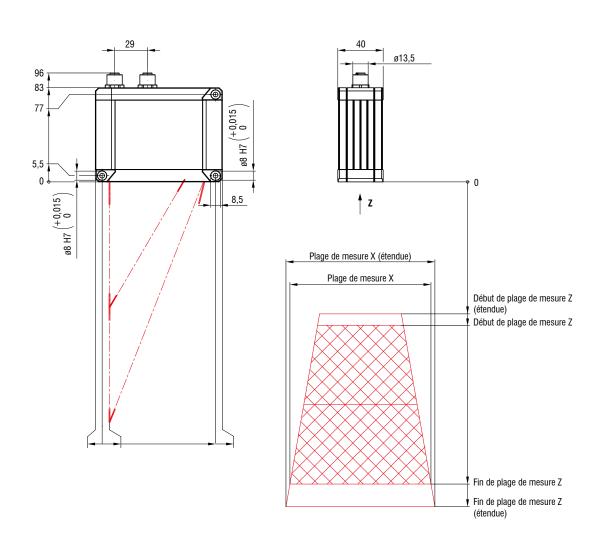
Taille réduite et compacte pour les applications robotiques

Disponible avec ligne laser rouge et bleue


GigE Vision Standard à intégration simple dans les logiciels de traitement de l'image courants

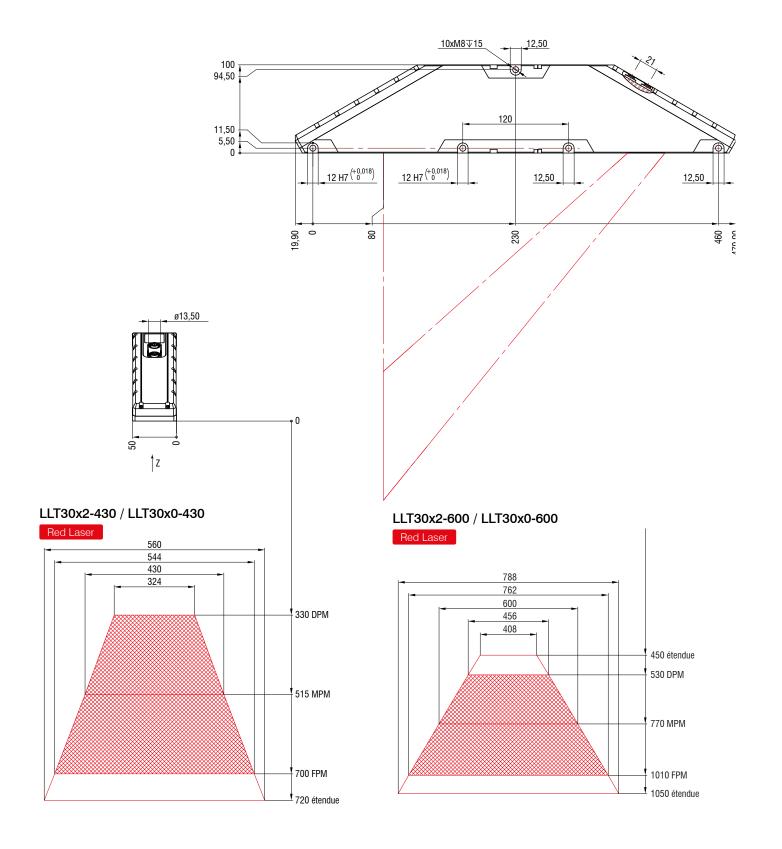
Les scanners à ligne laser scanCONTROL font appel au principe de la triangulation laser pour la détection bidimensionnelle des profils sur les surfaces les plus diverses. Une optique linéaire projette une ligne laser sur la surface de l'objet de mesure. Un système optique de haute qualité concentre la lumière diffuse réfléchie par cette ligne laser sur une matrice de capteur. Le contrôleur calcule à partir de l'image de la caméra, outre les informations de distance (axe z), la position le long de la ligne laser (axe x) et les transmet à un système de coordonnées bidimensionnel. En cas d'objets en mouvement ou de traversée du capteur, un nuage de points 3D est obtenu à partir de la juxtaposition des profils.

L'affectation exacte de la position du capteur à la position de l'objet à mesurer peut alors se faire via les entrées intégrées du codeur. Les scanners à ligne laser de la série scanCONTROL disposent d'une connexion Ethernet/GigE Vision et peuvent ainsi être intégrés dans les paquets de traitement d'images les plus divers, jusqu'à l'évaluation 3D. Pour les utilisateurs de LabVIEW, un pilote d'appareil est disponible, y compris des exemples de VI. De plus, l'intégration dans Linux est possible.



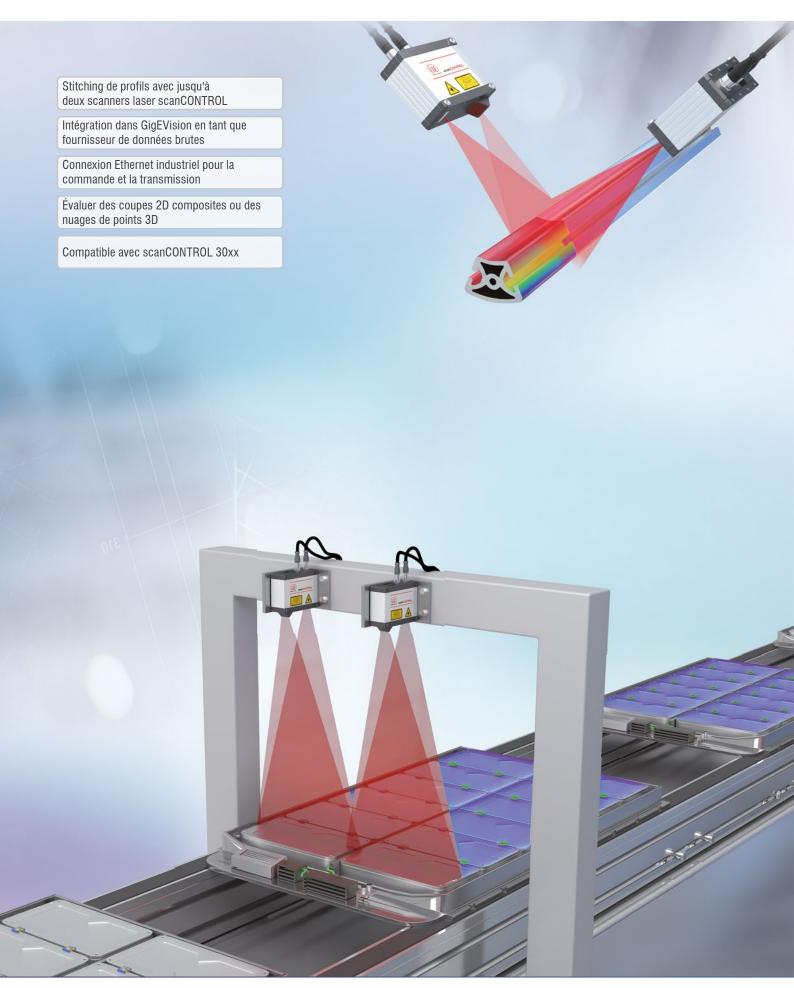
Scans 3D de haute précision

	Modèle		LLT30x0-25	LLT30x0-50	LLT30x0-100	LLT30x0-200			
	Version laser dispon	iible	Laser rouge Laser bleu	Laser rouge Laser bleu	Laser rouge Laser bleu	Laser rouge			
		Début de plage de mesure	77,5 mm	105 mm	200 mm	200 mm			
	Plage de mesure	Centre de plage de mesure	85 mm	125 mm	270 mm	310 mm			
		Fin de plage de mesure	92,5 mm	145 mm	340 mm	420 mm			
Axe Z		Hauteur de plage de mesure	15 mm	40 mm	140 mm	220 mm			
	Plage de mesure	Début de plage de mesure	-	-	190 mm	160 mm			
	élargie	Fin de plage de mesure	-	-	360 mm	460 mm			
	Linéarité de ligne 1) 2)		1,5 <i>µ</i> m	3 <i>µ</i> m	9 μm	26 μm			
	Lineante de lighe		±0,01 %	±0,0075 %	±0,006 %	±0,012 %			
	Plage de mesure	Début de plage de mesure	23,0 mm	43,3 mm	75,6 mm	130 mm			
		Centre de plage de mesure	25,0 mm	50,0 mm	100 mm	200 mm			
Axe X		Fin de plage de mesure	26,8 mm	56,5 mm	124,4 mm	270 mm			
Ž	Plage de mesure	Début de plage de mesure	-	-	72,1 mm	100 mm			
	élargie	Fin de plage de mesure	-	-	131,1 mm	290 mm			
	Résolution		2.048 points/profil						
	Fréquence de profil		jusqu'à 10.000 Hz						
		Ethernet GigE Vison	Pilotage de capteur Transmission de données de profil						
	Interfaces	Entrées numériques		Encodeur	on de mode (compteur) ncheur				
		RS422 (semi-duplex) ³⁾		Contrôle du capteur Déclencheur Synchronisation					


 ¹⁾ Se référant au champ de mesure; objet de mesure: Micro-Epsilon objet standard
 ²⁾ Calcul de moyenne sur la largeur du champ de mesure (2:048 points)
 ³⁾ Interface RS422 programmable en tant qu'interface de série ou entrée de déclenchement/synchronisation

Scanner laser pour la mesure de profil 3D **scanCONTROL**

	Modèle		LLT 30x0-430	LLT 30x0-600			
	Version laser disponible		Laser rouge	Laser rouge			
	Plage de mesure	Début de plage de mesure	330 mm	530 mm			
		Centre de plage de mesure	515 mm	770 mm			
		Fin de plage de mesure	700 mm	1010 mm			
Axe Z		Hauteur de plage de mesure	370 mm	480 mm			
Š	Plage de mesure élargie	Début de plage de mesure	330 mm	450 mm			
	riage de mesure elargie	Fin de plage de mesure	720 mm	1050 mm			
	Linéarité de ligne 1) 2)		12 μm	15 <i>μ</i> m			
	Lineante de ligne 4-7		±0,0032 %	±0,0031 %			
	Plage de mesure	Début de plage de mesure	324 mm	456 mm			
		Centre de plage de mesure	430 mm	600 mm			
×		Fin de plage de mesure	544 mm	762 mm			
Axe X	Plage de mesure élargie	Début de plage de mesure	324 mm	408 mm			
		Fin de plage de mesure	560 mm	788 mm			
	Résolution		2.048 points/profil				
	Fréquence de profil		jusqu'à 10.000 Hz				
		Interfaces Ethernet version GigE	Pilotage de capteur Transmission de données de profil				
	Interfaces	Entrées numériques	Commutation de mode Encodeur (compteur) Déclencheur				
		RS422 (semi-duplex) ³⁾	Contrôle du capteur Déclencheur Synchronisation				


 ¹⁾ Se référant au champ de mesure; objet de mesure: Micro-Epsilon objet standard
 ²⁾ Calcul de moyenne sur la largeur du champ de mesure (2.048 points)
 ³⁾ Interface RS422 programmable en tant qu'interface de série ou entrée de déclenchement/synchronisation

(dimensions en mm, non à l'échelle)

Stitching de profils pour jusqu'à 2 scanners laser **3D Profile Unit**

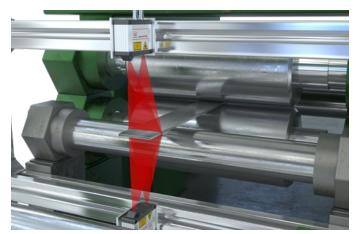
La 3D Profile Unit permet de calculer plusieurs profils individuels de capteurs scanCONTROL 30xx dans un système de coordonnées commun. Cela permet de générer un profil 2D composite ou un nuage de points 3D composite. Il est ainsi possible de détecter les géométries les plus diverses, d'étendre les plages de mesure ou de réaliser des mesures d'épaisseur.

L'analyse des données et le paramétrage du système peuvent être réalisés dans le logiciel 3DInspect. Le contrôleur 3D Profile Unit dispose en option d'une évaluation intégrée en liaison avec la connexion Industrial Ethernet, de sorte qu'une commande de l'application et une sortie des valeurs de mesure vers un API sont possibles.

Le contrôleur la 3D Profile Unit peut également être intégré dans les programmes de traitement d'images courants via GigEVision et agit comme un fournisseur de données brutes.

Contrôleur 3D Profile Unit

- Communication avec n'importe quel client GigE Vision
- Intégration directe dans un logiciel de traitement de l'image
- Transfert de données de profil ou de nuages de points 3D


Contrôleur 3D Profile Unit avec Ethernet industriel

- Évaluation intégrée
- Transmission des valeurs de mesure
- Interface Ethernet industriel pour la commande et le transfert de valeurs de mesure

Exemples d'applications

Mesure de l'épaisseur des bandes d'acier laminées à froid

L'épaisseur des plaques supports de smartphones

Largeur, épaisseur et Heavy Edge des films pour batteries

Examen des cellules de pouch

Capteurs 3D de haute précision pour l'inspection en ligne de figure et surface

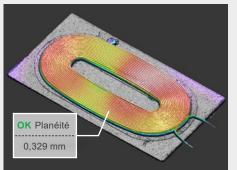
surfaceCONTROL 3D 3500

Répétabilité maximum jusqu'à $0,25 \mu m$

La meilleure résolution z à partir de $0.7 \mu m$

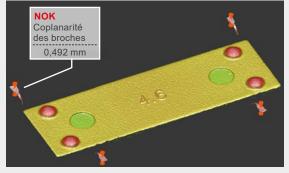

Jusqu'à 2,2 millions de points 3D / seconde

Intégration simple dans tous les paquets de traitement d'images 3D



Doté d'une remarquable précision, le capteur d'instantanés 3D surfaceCONTROL 3D 3500 est idéal pour l'inspection en ligne automatisée de géométrie, figure et surface sur les surfaces à réflexion diffuse. Ce capteur fonctionne selon le principe de la projection de la lumière structurée ce qui permet de réaliser une mesure 3D directe. Le surfaceCONTROL 3D 3500 se distingue par sa construction compacte ainsi que sa haute précision de mesure en combinaison avec un traitement de données extrêmement rapide. Avec une répétabilité z jusqu'à 0,25 μ m, le capteur définit de nouveaux standards dans la technique de mesure 3D hautement précise. C'est ainsi qu'il détecte avec fiabilité les plus petites déviations de planéité et de hauteur. Deux modèles couvrent des champs de mesure différents.

En plus de la sortie rapide de données par le biais de Gigabit Ethernet, le capteur offre également une interface E/S numérique. Le 2D/3D Gateway II soutient EtherNet/IP, PROFINET et EtherCAT. Les outils de logiciel performants permettent une mesure 3D précise ainsi qu'une inspection de surface. La compatibilité GigE Vision permet par ailleurs une intégration facile dans un logiciel de traitement de l'image des fournisseurs tiers. Le SDK exhaustif pour l'intégration de logiciel du client complète le progiciel.


Instantanés 3D hautement précis

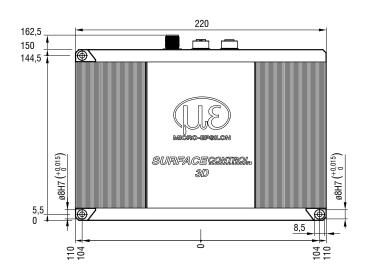
Contrôle de la planéité du bobinage des bobines de charge

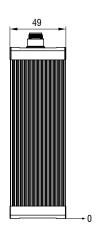
Mesure de la planéité du flasque d'une roue dentée

Mesure de la coplanarité des contacts sur les composants électriques

Modèle		SC3500-30	SC3510-30	SC3500-80	SC3510-80	SC3500-120	SC3510-120	SC3500-240	SC3510-240	
	Début du champ élargi	28 x 17,5 av	/ec 124 mm	55 x 42 ave	55 x 42 avec 110 mm		87,5 x 62,5 avec 171 mm		145 x 115 avec 340 mm	
Champ de mesure	Début	29,5 x 18,0 avec 127 mm		67,5 x 46 avec 120 mm		107,5 x 70 avec 191 mm		190 x 130 avec 380 mm		
Longueur (x) *	Centre	30 x 18,5 av	/ec 130 mm	80 x 50 avec 130 mm		120 x 75 avec 206 mm		240 x 150 avec 440 mm		
largeur (y) avec distance (z)	Fin	30,5 x 19,0 a	30,5 x 19,0 avec 133 mm		ec 140 mm	123,5 x 80 a	vec 221 mm	245 x 170 avec 500 mm		
	Fin du champ élargi	31,0 x 19,5 avec 136 mm		75 x 54 ave	75 x 54 avec 150 mm		vec 241 mm	245 x 180 avec 540 mm		
Distance	Z	130 ±	:3 mm	130 ±	10 mm	206 ±	15 mm	440 ±	60 mm	
de travail	z étendu	130 ±	:6 mm	130 ±	20 mm	206 ±	35 mm	440 ±1	00 mm	
Résolution	x,y	8 μ	<i>u</i> m	20	um	30	μm	60	um	
Resolution	Z 1)	0,7	μm	1 μ	ım	2 μ	<i>ı</i> m	4 μ	ım	
Répétabilité	$Z(\sigma)^{1)}$	< 0,2	25 μm	< 0,	4 μm	< 0,	7 μm	< 1,	4 μm	
Temps de capture	2) 3)				0,2	. 0,4 s				
Source de lumière)	LED								
Tension d'alimenta	ation	24 VCC ±20 %								
Consommation er	n courant max.	0,5 2,5 A								
Interfaces numério	ques	Gigabit Ethernet (GigE Vision / GenICam) / PROFINET 4) / EtherCAT 4) / EtherNet/IP 4)								
Entrées/sorties nu	ımériques	4 E/S numériques paramétrables (pour déclencheur externe, contrôle du capteur, sorties de l'état du capteur)								
Raccordement		Douille M12 à 8 pôles pour Gigabit Ethernet, douille M12 à 12 pôles pour E/S numériques, fiche M12 à 4 pôles pour l'alimentation électrique								
Montage		3 trous de fixation (montage reproductible avec douilles de centrage)								
Plage de tempéra	Stockage	-20 +70 °C								
riage de tempera	en service 5)	0 +45 °C						0 +	-40 °C	
Choc (DIN EN 600	068-2-27)	15 g / 6 ms dans les axes XY, respectivement 1000 chocs								
Vibration (DIN EN	60068-2-6)	2 g / 20 500 Hz dans les axes XY, respectivement 10 cycles								
Indice de protection	on (DIN EN 60529)	IP67								
Matériau		Boîtier en aluminium, refroidi de manière passive, refroidissement externe disponible en option (voir les accessoires)								
Poids		1,9 kg 2,3 kg								
Commande et affi	chage	3 LED (pour état appareil, power, transmission de données)								
SDK du capteur		Micro-Epsilon SDK de capteur 3D								
Logiciel d'évaluati	on 3D	Micro-Epsilon 3DInspect								
Extension de fonc	tions	-	3DInspect Automation	-	3DInspect Automation	-	3DInspect Automation	-	3DInspect Automation	

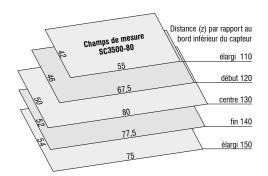
PM = Plage de mesure

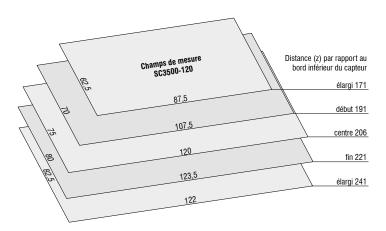

⁹ Mesurée sur la cible avec une surface coopérative au centre du champ de mesure avec le paramètre activé EnhancedSNR et l'utilisation unique d'un filtre moyen 3x3 à une température ambiante constante de 20 $\pm 1\,^{\circ}\text{C}.$

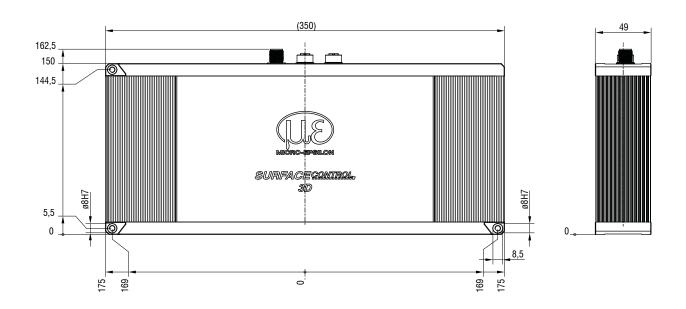

² Durée requise par le capteur pour l'acquisition de l'image des projections du motif (sans temps de traitement et temps d'évaluation).
3 S'applique aux temps d'exposition < 6.800 µs
4 Connexion au module interface 2D/3D Gateway

⁵⁾ Température de service maximale admissible dépend de la situation d'installation, la connexion et le mode de fonctionnement En combinaison avec une unité de ventilation (art. n° 2105079), un mode de mesure continu est possible jusqu'à une température ambiante de 45 °C (valable pour les plages de mesure 30, 80 et 120 mm)

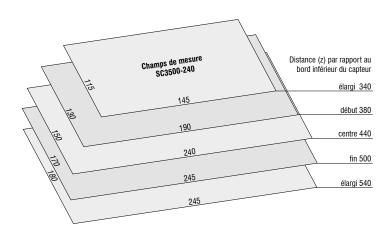
Dimensions et champs de mesure


surfaceCONTROL 3D





surfaceCONTROL 3D 3500-30 / -80 / -120

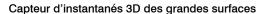

Champs de mesur SC3500-30	e Distance (z) par rapport au bord inférieur du capteur
28	élargi 124
11	début 127
8 30	centre 130
[]55	fin 133
195 31	élargi 136

surfaceCONTROL 3D 3500-240

Capteur 3D pour l'inspection de grandes surfaces

surfaceCONTROL 3D 2500

Inspection des objets de grandes dimensions

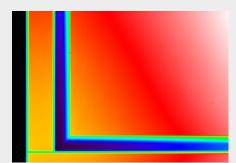

Grande profondeur de la plage de mesure jusqu'à 300 mm

Durée de capture à partir de 0,5 s

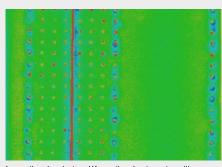
Répétabilité de l'axe z jusqu'à $0.5 \mu m$

Mesure 3D en ligne automatisée pour l'inspection de géométrie, figure & surface

Données 3D réelles par le biais du dernier standard 3D GigE Vision



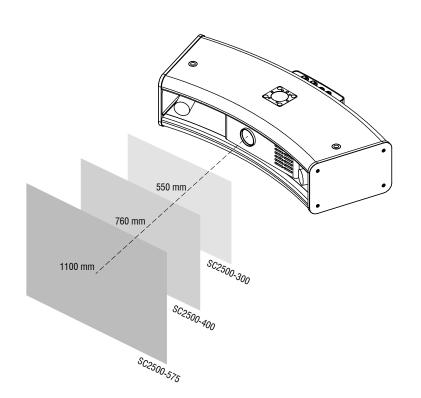
Dotés d'une remarquable précision, les capteurs 3D surfaceCONTROL sont parfaits pour l'inspection en ligne automatisée de géométrie, figure et surface sur les surfaces à réflexion diffuse. Les capteurs d'instantanés 3D fonctionnent selon le principe de la projection de la lumière structurée ce qui permet de réaliser une mesure 3D directe. Le capteur se caractérise à la fois par un grand champ de mesure, une profondeur de plage de mesure élevée et une bonne précision de répétabilité en z jusqu'à 0,5 μ m. Trois modèles couvrent des champs de mesure différents.

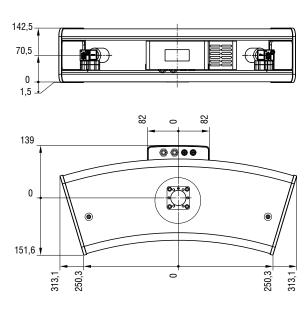

Les images capturées sont tout d'abord transférées au contrôleur externe où elles sont traitées en données 3D. Le contrôleur SC2500 offre une sortie rapide des données par le biais de Gigabit Ethernet. Le 2D/3D Gateway II soutient EtherNet/IP, PROFINET et EtherCAT. Les outils de logiciel performants 3DInspect, DefMap3D et InspectionTools permettent une mesure 3D précise ainsi qu'une inspection de surface. La compatibilité GigE Vision permet par ailleurs une intégration facile dans un logiciel de traitement de l'image des fournisseurs tiers. Le SDK exhaustif pour l'intégration de logiciel du client complète le progiciel.

Instantanés 3D grand format de haute précision

Défaut de forme sur les panneaux de meuble

Inspection des rivets : déformation, hauteur et position du rivet


Marques d'enfoncement sur les composants moulés par injection


Modèle	surfaceCONTROL 3E	SC2500-300	SC2510-300	SC2500-400	SC2510-400	SC2500-575	SC2510-575	
Champ de mesure	Débu	t 260 mm x 190 n	260 mm x 190 mm avec 475 mm		350 mm x 260 mm avec 660 mm		500 mm x 375 mm avec 950 mm	
Longueur (x) * largeur (y)	Centre	300 mm x 220 n	300 mm x 220 mm avec 550 mm		400 mm x 300 mm avec 760 mm		575 mm x 435 mm avec 1100 mm	
avec distance (z)	Fir	340 mm x 250 n	340 mm x 250 mm avec 625 mm		450 mm x 340 mm avec 860 mm		m avec 1250 mm	
Distance de travail	:	550 ±	550 ±75 mm		760 ±100 mm		150 mm	
Résolution	X,	125	5 μm	150	μm	250	μm	
Hesolution	Z	1,2	1,2 <i>µ</i> m		3,4 μ m		um	
Répétabilité	Z ₍₀₎	< 0,	5 μm	< 1,	2 μm	< 3,0) μm	
Temps de capture ^{2) 3)}				0,5 .	1 s			
Source de lumière		LED						
Tension d'alimentation		18 VCC ±33 %						
Consommation en couran	t max.	6 12,5 A						
Raccordement		Prise femelle M12 à 8 pôles pour caméra Gigabit Ethernet 1, connexion au contrôleur, Prise femelle M12 à 8 pôles pour caméra Gigabit Ethernet 2, connexion au contrôleur, Connecteur LEMO PushPull à 4 pôles pour la commande des capteurs (USB), connexion au contrôleur, Connecteur LEMO PushPull à 2 pôles pour la tension d'alimentation						
Montage			Montage par adaptateur de bride (voir accessoires)					
Plage de température 4)	Stockage	-10 +50 °C (non condensée)						
riage de temperature "	Fonctionnemen	+5 +40 °C						
Indice de protection (DIN I	EN 60529)	IP40						
Matériau		Carbone, aluminium, plastique						
Poids		7,0 kg (sans contrôleur)						
Commande et affichage		2 LED sur chaque caméra (pour l'état appareil, l'alimentation, la transmission des données)						
SDK du capteur		Micro-Epsilon SDK de capteur 3D						
Logiciel d'évaluation 3D		Micro-Epsilon 3DInspect						

<sup>Mesurée sur la cible avec une surface coopérative au centre du champ de mesure avec le paramètre activé EnhancedSNR et l'utilisation unique d'un filtre moyen 3x3 à une température ambiante constante de 20 ± 1 °C.

Durée requise par le capteur pour l'acquisition de l'image des projections du motif (sans temps de traitement et temps d'évaluation).

S'applique aux temps d'exposition < 25 ms</sup>

⁴⁾ Projecteur avec refroidissement actif. Refroidi par air. Zone de projection et zone de refroidissement séparées

Capteur pour l'inspection haute résolution des surfaces réfléchissantes

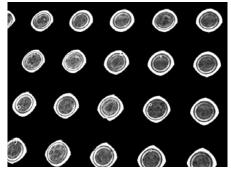
reflectCONTROL Sensor

Détection fiable des plus petits écarts à partir de 10 nm

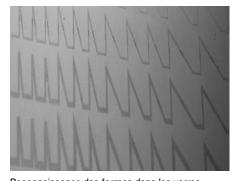
Taux d'inspection à partir de 1 seconde par position de mesure

Inspection stationnaire ou sur le robot

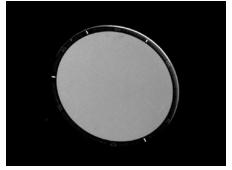
Connexion logicielle via le Micro-Epsilon 3D-SDK, basé sur GigE Vision et GenlCam



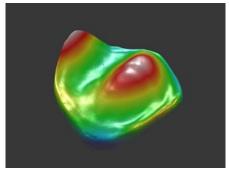
Inspection de surface 2D et mesure 3D


reflectCONTROL est conçu pour l'inspection de surface des objets miroitants. Le capteur compact diffuse une projection de franges sur l'écran qui est réfléchie par le biais de la surface de l'objet dans les caméras du capteur. Les déviations de surface causent des déviations dans les franges de lumière qui sont alors évaluées par un logiciel.

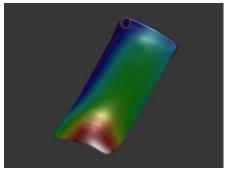
Les données de mesure sont traitées en images 2D qui représentent la structure de la surface. Le capteur RCS110-245 2D crée des images 2D à haute résolution et permet d'examiner la surface en détail en deux dimensions. Le capteur RCS130-160 3D HLP peut calculer un nuage de points 3D en plus des images 2D. Ce nuage de points permet une analyse très précise des irrégularités, rayures et autres défauts.


Applications de l'inspection 2D de surface

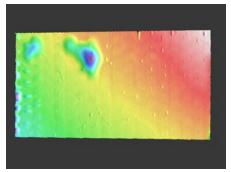
Détection de défauts sur les pièces peintes



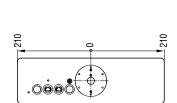
Reconnaissance des formes dans les verres

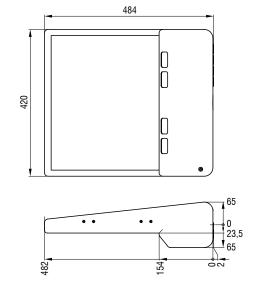


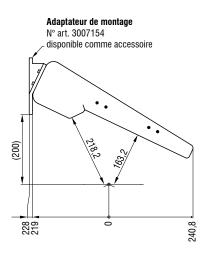
Détection de défauts sur des objets de mesure transparents


Applications des mesures géométriques 3D :

Détermination de la planéité des wafers/miroirs/ ontiques




Mise en forme et respect des dimensions de smartphone



Mesure des creux ou des bosses

Modèle		RCS130-160 3D HLP	RCS110-245 2D			
Champ de mesure dans le plan de Longueur * largeur (x * y) 1) référence		170 mm x 160 mm avec 200 mm	116 mm x 245 mm			
Acquisition des données de m	esure	env. 1 s 2 s	env. 0,6 s 2,7 s			
Évaluation		env. 2 s 3 s	env. 0,5 s 2,4 s			
Résolution	x, y	100 μm	70 μm			
Écart de planéité	Z ²⁾	0,3 <i>µ</i> m	-			
Tension d'alimentation		24 VCC (ne doit pas dépasser 26 V)				
Puissance consommée		< 50 W				
Interfaces et connexions		1 x GigE Vision (RJ45), 1 x Ethernet (RJ45), alimentation électrique (connecteur Lemo à 3 pôles)				
Montage		adaptateur de bride reproductible mécaniquement				
Plage de températures	Stockage	-10 +60 °C				
riage de temperatures	en service 2)	0 +	-40 °C			
Humidité de l'air 2)		10 80 %, non condensée				
Version		boîtier en carbone à ventilateur réglé, construction avec contrôleur intégré				
Poids		< 7	'kg			

½ Les indications de taille se réfèrent au plan de référence.
 ¾ Mesuré après référencement avec un miroir plan de ø 300 mm et une planéité de lambda/10.
 Après le référencement, une fluctuation maximale de température de ±2 °C et une variation d'humidité de ±2 % doivent être respectées.

PC industriel pour capteurs GigE Vision

Industrial Performance Unit

Solution performante pour les tâches de mesure 3D

Compatibilité totale et possibilité de mise en ligne pour l'application du client

Logiciel intuitif 3DInspect avec technologie Valid3D de Micro-Epsilon

Mise en service efficace des capteurs Micro-Epsilon

Interfaces intégrées : Modbus/TCP, EtherCAT, PROFINET, EtherNet/IP

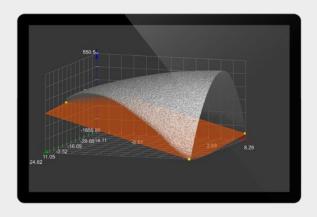
Matériel adapté à l'industrie avec un refroidissement passif

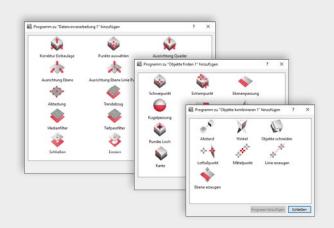
La solution performante pour les tâches de mesure 3D

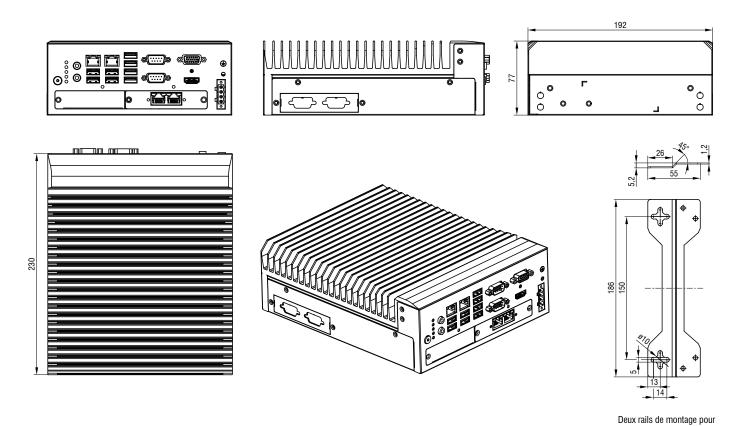
L'Industrial Performance Unit est une plateforme informatique performante pour la mise en service efficace des capteurs et systèmes Micro-Epsilon, qui offre une compatibilité totale et une capacité en ligne pour l'application du client.

Les capteurs 3D de Micro-Epsilon sont raccordés à l'Industrial Performance Unit via le standard GigE Vision. Grâce au logiciel intuitif 3DInspect avec la technologie Valid3D de Micro-Epsilon, il est possible de paramétrer facilement et rapidement le capteur, ce qui permet de commencer immédiatement la mesure. Les données 3D sont directement traitées sur l'Industrial Performance Unit, analysées et évaluées via 3DInspect. Pour la sortie des résultats, les interfaces intégrées Modbus/TCP, EtherCAT, PROFINET et EtherNet/IP sont disponibles.

Le matériel adapté à l'industrie avec un refroidissement passif offre une flexibilité permettant une installation simple et peu encombrante. Il est donc possible de l'intégrer sans problème dans une armoire électrique ou de le fixer directement dans la machine. Les accessoires tels que le moniteur, la souris ou le clavier peuvent être connectés sans problème à l'ordinateur.







Modèle		Industrial Performance Unit			
Mémoire vive		16 Go			
Mémoire		128 Go SSD			
Tension d'alimentation		9 36 V DC			
Puissance consommée	typ.	50 W			
Fulssarice Corisonninee	max.	112 W			
Interfaces numériques		Gigabit Ethernet (GigE Vision / GenlCam) / PROFINET / EtherCAT / EtherNet/IP			
Raccordement		Bornier d'alimentation 4 pôles ; 2x RJ45 pour Gigabit Ethernet, 2x RJ45 pour Ethernet industriel (ProfiNET, EtherCAT ou EtherNet/IP) ; 1x HDMI, 1x VGA, 4x USB3.2 (Gen1) ; 4x USB2.0			
Montage		Trous de montage ; accessoires pour le montage sur table ou mural et le montage sur rail DIN			
Plage de températures	Stockage	-40 +85 °C			
riage de temperatures	en service 1)	0 +50 °C			
Choc (DIN EN 60068-2-27)		20 g / 11 ms demi-sinusoïdal			
Vibration (DIN EN 60068-2-	6)	3 g / 5 500 Hz			
Indice de protection (DIN E	N 60529)	IP40			
Matériau		Boitier en métal			
Poids		2,8 kg			
Commande et affichage		2 LED pour le stockage et l'alimentation ; 4 LED pour l'affichage d'état Ethernet 1 commutateur d'alimentation on/off			
Caractéristiques		Windows 10 IoT Enterprise			

¹⁾ Température de service maximale admissible pour un courant d'air de 0,7 m/s

une installation sur table ou au mur sont inclus dans la livraison

Système de capteur pour la mesure d'épaisseur et de profil en ligne thicknessGAUGE 3D

Solution complète et compacte avec alimentation 24 V

Mesure de nombreux surfaces/matériaux

Axe linéaire pour la traversée

Calibrage entièrement automatique

Logiciel intégré

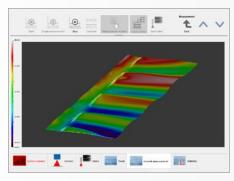
Classe laser 2M, ne nécessite aucune mesure de protection particulière

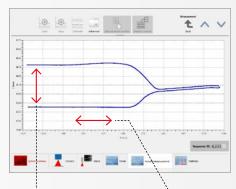
Mesure en ligne de l'épaisseur et du profil

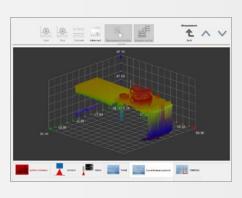
Le thicknessGAUGE 3D est un système de capteurs précis pour la mesure bilatérale de profil et d'épaisseur de matériaux en barres et en plaques. Deux scanners de profil laser placés face à face enregistrent de manière synchronisée des données de profil le long d'un mouvement linéaire, qui sont ensuite réunies en un nuage de points 3D. Sur ce nuage de points, le thicknessCONTROL 3D calcule des valeurs cibles librement programmables afin de résoudre des tâches de mesure complexes en 2D ou en 3D.

Le paramétrage de l'évaluation concrète s'effectue via le logiciel 3DInspect. Les programmes de mesure et les grandeurs de mesure qui y sont créés sont transférés dans le logiciel thicknessCONTROL où ils sont traités de manière automatisée.

En fin de compte, seul le résultat souhaité est sorti. Par le biais d'un axe linéaire, le système de capteur traverse de la position de stationnement vers le point de mesure. Dans la position de stationnement, l'étalon pour mesure de référence se trouve en calibrage entièrement automatique.

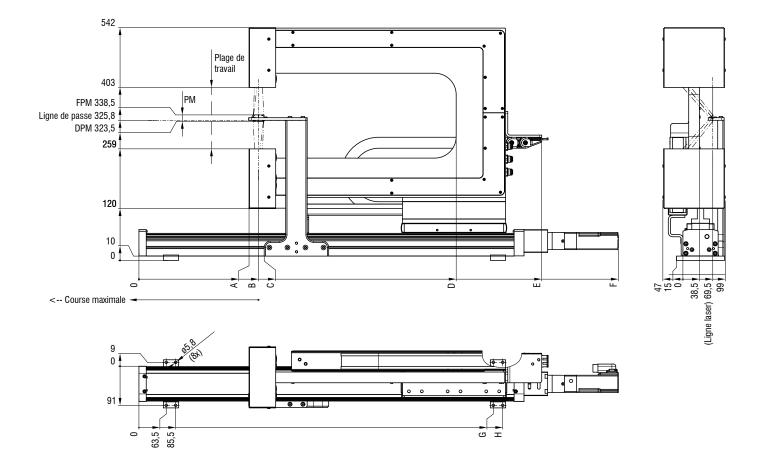

Calibrage automatique & compensation en température


Les systèmes thicknessGAUGE sont équipés d'un calibrage in-situ, p. ex., pour compenser les effets des températures variables. Par le biais de l'axe linéaire, le thicknessGAUGE traverse vers le point de mesure. Les cycles de calibrage sont individuellement ajustables. En plus de la compensation en température, le calibrage in-situ peut également attester cycliquement et à tout moment du bon fonctionnement du système.



La calibration entièrement automatique permet les mesures stables

Mesure d'épaisseur et évaluation de profil 3D



Possibilité de calculer l'épaisseur \ Possibilité d'évaluation du profil

Modèle		C.LP-3D-15/200	C.LP-3D-15/400	C.LP-3D-15/600			
N° art.		4350127.730	4350127.731	4350127.732			
Largeur de mesure		200 mm	400 mm	600 mm			
Plage de travail			144 mm				
Plage de mesure ¹⁾	Axe Z (épaisseur)		15 mm				
riage de mesure	Axe X (mesure 3D)		max. 26,8 mm				
Course maximale 2)		380 mm	580 mm	780 mm			
Précision de mesure	3)		±1,2 μm				
Résolution	Axe Z (épaisseur)	0,2 <i>µ</i> m					
nesolution	Axe X (mesure 3D) 4)	1.024 points/profil					
Fréquence de mesur	re ^{1) 5)}	500 Hz					
Calibrage		automatique					
Poids	Axe, moteur et cadre en C	17,6 kg	22,3 kg	26,8 kg			
roius	Boîte à bornes de bus et Panel IPC		14,1 kg				
Tension d'alimentation	on	24 V					
Humidité		5 % HR 95 % HR (sans condensation)					
Indice de protection	(DIN EN 60529)	IP40 (boîte à bornes de bus IP54)					
Plage de	Stockage	-20 65 °C					
températures	Fonctionnement	5 45 °C					
Commande et afficha	age	IPC de panneau avec logiciel inclus dans la livraison					
Caractéristiques		boîte à bornes de bus compacte de 300 x 300 x 210 mm seulement					

^{5) 500} Hz (standard); up to 2000 Hz on request

Modèle	Α	В	С	D	E	F	G	Н
C.LP-3D-15/200	271	293,2	307	563	737	916	624,5	646,5
C.LP-3D-15/400	256	278	292	738	937	1115	824,5	846,5
C.LP-3D-15/600	224	245,5	259	916	1140	1316	1024,5	1046,5

 ${\rm PM} = {\rm plage} \ {\rm de} \ {\rm mesure}$ DPM = début de la plage de mesure ${\sf FPM}={\sf fin}\;{\sf de}\;{\sf plage}\;{\sf de}\;{\sf mesure}$ Dimensions en mm (non à l'échelle).

¹⁾ En fonction de la tâche de mesure
2) Autres longueurs sur demande
3) 2 sigma ; données valables pour un étalon de mesure métallique à réflexion diffuse (certifié DAkkS)
4) 1004 paints (motil (abandors) 2 0.040 points (profil our demande)

⁴⁾ 1.024 points/profil (standard) ; 2.048 points/profil sur demande

Capteurs et systèmes de mesure de Micro-Epsilon

Capteurs et systèmes pour le déplacement, la distance et la position

Capteurs et appareils de mesure de température sans contact

Systèmes de mesure et d'inspection pour les métaux, le plastique et le caoutchouc

Micromètres optiques, guides d'onde optique, amplificateurs de mesure

Capteurs pour la détection des couleurs, analyseurs DEL et spectrophotomètres

Mesure 3D pour l'inspection dimensionnelle et l'inspection de surface